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Broad goals in science of deep learning

Understand how deep neural networks learn
● How does algorithm, architecture, hyperparameters, choice of task play a role in the 

final result?

But there’s much to understand, which makes this a tricky problem. How to guide problem 
selection?
● Usually have something in mind: performance or generalization, uncertainty, 

robustness, privacy, fairness, etc.

 
This talk:
● Motivated with generalization in mind
● Motivated by trying to partition space of hyperparameters into distinct classes
● Motivated by going beyond our previous work on the infinite width limit 



Towards the limit of infinite width

See e.g. B. Neyshabur, et al. ICLR 2015 workshop, NeurIPS 2017, ICLR 2019.

Trend in deep learning has been 
towards overparameterization 
(width, depth)

Natural to ask: what happens to 
neural networks in the infinite 
width limit?



The Infinite Width Story: Gaussian Processes and Kernels

[1]. R. Neal. “Priors for Infinite Networks.” 1994. [Single-hidden layer neural network]
[2]. Lee* and YB*, et al. ICLR 2018. [Deep neural networks]
[3].  A. G. de G. Matthews, et al. ICLR 2018. [Deep neural networks]
Architecture dependent extensions by many others not listed, including conv, attention, graph NNs.
Recently, G. Yang, NeurIPS 2019. [General architectures]
[4]. S. Yaida. PMLR 2020. [Corrections to GP prior, Bayesian inference]

In the infinite width limit:

Enables exact Bayesian inference.

“NNGP” Kernel



The Infinite Width Story: Gradient Descent

Given some evolution of neural network parameters, how does the (end-to-end) function 
evolve?

This equation is not 
closed in general.



The Infinite Width Story: Gradient Descent

[1]. See A. Jacot, et al. “Neural Tangent Kernel.” NeurIPS 2018, and many others not listed here.

This highlights a special dynamical variable:

It turns out that in the limit of infinite width*, this dynamical variable does not evolve 
-- it is frozen at its initial value (“Neural Tangent Kernel”). [1]

Gradient descent in such infinitely wide deep nets ➝ (fixed) kernel regression.

*Under certain conditions.



The View from Infinite Width

In parameter space, is equivalent to training a first-order Taylor expansion (I’ll refer 
to as “linearization”) of the model about its initial parameters.

[1]. Lee*, Xiao*, Schoenholz, YB, Novak, Sohl-Dickstein, Pennington. NeurIPS 2019.
[2]. Chizat, Oyallon, Bach. NeurIPS 2019.

(Highlights an example of correspondence between kernels ↔ linear models 
constructed from their features)



Wide networks and their linearization

A WideResnet type model and its linearization. SGD with momentum and 
MSE loss on full CIFAR-10. Channel size = 1024, one block, batch size = 8.

Which nonlinear models are well described by their linearization? 



This Talk

(Specializing to the case of MSE loss for remainder)

● Nonlinear models often perform better than their linearized counterparts.

● We observed empirically: At finite width, nonlinear models are trainable up to larger 
learning rates than are inaccessible for the linearized model. In many practical settings, 
we often tend to use large learning rates.

○ The infeasibility of the linearized problem ~ convex optimization.
○ Can we say more about the infeasibility of the nonlinear problem?
○ What happens to the nonlinear model in this other learning rate regime, since it 

cannot behave as a linearized model?



Partition the space of (Models + SGD) 

Special quantity λ0

(This is the top eigenvalue of the NTK at initialization, which you can think of as ≈ the top 
eigenvalue of Hessian. The two are exactly the same at infinite width, specializing to 
MSE loss.)

learning rate η

“Small”? “Large”? “Divergent”?

If you trained the same model at different learning rates, 
what would you observe? 



Delineation of Phases

learning rate η

Lazy Catapult Divergent

ηcrit = 2/λ0 ηmax = c/λ0 where c ~ 4, 12
(mildly architecture dependent)

Connects to existing 
infinite-width theory as 
networks become wider

Appears to not connect 
to existing infinite-width 
theory 



Signature: evolution of the loss (train, test)

Left: Three hidden-layer Relu fully-connected 
network on MNIST

Right: Wide Resnet 28-10 on CIFAR-10

ηcrit ~ 6.25 = 2/λ0 ηcrit ~ 0.18 = 2/λ0



Signature: evolution of the curvature

Right: Wide Resnet 28-10 on CIFAR-10

ηcrit ~ 6.25 = 2/λ0 ηcrit ~ 0.18 = 2/λ0

Left: Three hidden-layer Relu fully-connected 
network on MNIST



Signature: final curvature vs initial learning rate

Right: Wide Resnet 28-10 on CIFAR-10

ηcrit ~ 6.25 = 2/λ0 ηcrit ~ 0.18 = 2/λ0

Left: Three hidden-layer Relu fully-connected 
network on MNIST



Three learning rate regimes

Lazy Phase: η < 2/λ0
The curvature remains ~constant during the initial part of training. Model behaves (loosely) 
as a model linearized about its initial parameters (exactly true in the infinite width limit).

Catapult Phase: ηcrit = 2/λ0 < η < ηmax
The curvature at initialization is too high for training converge to a nearby point. The 
linearized approximation breaks down. Training begins with a period of growth in the loss + 
simultaneous decrease in the curvature until it stabilizes with λt < 2/η. Converge to a flatter 
minimum.

We find ηmax~ c/λ0 where c is an architecture-dependent constant. c = 4 in the simple 
model, c~ 4 for Tanh networks empirically, c ~ 12 for Relu networks empirically. 

Divergent Phase: η > ηmax
Training diverges.



Aside: two ways to parameterize your neural network

(For some discussion on this, see e.g. Park, et al. arxiv 1905.03776.)



Dynamics in a simple model



Dynamics in a simple model



Phases in a simple model



Phases in a simple model



Three phases: catapult phase

Dynamics in 
the catapult 
phase

If we take the infinite width limit first, we will miss a stable fixed point of the 
dynamics different than NTK. 



Dynamics in a simple model

We term the period during time evolution when curvature adjusts via this mechanism the 
rearrangement.

The numerics below are for the simple model just described. 
(Here, critical η ~ 1 and width = 1000.) 

We reproduce the signatures of the three phases:



Full model analysis

In function 
space, the 
updates are:



Full model analysis

A projected equation looks a bit more similar: 

The error vector starts to project onto the top NTK eigendirection exponentially fast, so 
approximate it as lying along that subspace to find:

So that a similar analysis to the simplest model can be done.



Connection to generalization

● Lazy phase and catapult phase have different behaviors in early time dynamics. 

● This particularly affects the curvature. 

● Empirically, we find that these differences at early times often have implications for 
generalization (i.e. late-time dynamics). 

 

Comment on comparison:
● Could compare for fixed step budget.
● Could compare for same physical time budget. 

We find differences can still persist even when 
the smaller learning rates have ‘equivalent’ time.
○ Evolution for same physical time t = η * 

step.

Fixed step comparison.



Comparison of generalization across learning rate

Single hidden-layer 
FC Relu on 512 
MNIST samples

Wide Resnet 28-10 on 
CIFAR-10 with L2 reg
and data augmentation

Wide Resnet 28-10 on 
CIFAR-100 with L2 reg
and data augmentation

Larger learning rates -- lower curvature at the end of training (flatter minima) -- typically better 
performance



Phase transitions & perturbation theory

Schematically, we have an expansion:

As we saw in the simple model, all terms become of ~ the same order and cannot be ignored.

Perturbation theory studied in [1]; we believe this transition is a breakdown in the expansion.

Single hidden-layer FC 
Relu on 512 MNIST 
samples, with LR in the 
catapult phase

However, once the curvature scale drops, as we saw, 
we can go back to ignoring those higher-order terms.

● Can resume treatment as a linearized model

● Perturbation theory with respect to a point after 
the rearrangement will be well-behaved

[1]. Dyer & Gur-Ari, ICLR 2020. Huang & Yau, ICML 2020.



Phase transition: critical exponent

Expect non-analyticity in the final curvature as a function of learning rate (in this modified 
infinite width limit).

Number of steps till convergence:

Same exponent above/below the transition.



Closing Remarks

● Rather universal empirical signatures of the catapult phase across datasets, architectures
○ Growth in loss, drop in curvature, relevant time scale
○ ηcrit = 2/λ0 , ηmax~ c/λ0. 

● Guide for hyperparameter tuning (when using MSE loss)
○ Only need a measurement (NTK top eigenvalue) at initialization

● Analysis of a closed dynamical system reveals different phases
○ Modified infinite-width, infinite time limit 
○ Dynamical mechanism seems to be more general

● Breakdown of perturbation theory; phase transition

● Connection to generalization
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