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Equivariant Networks

The story so far



Symmetry

Definition

‘A transformation of an object that leaves the object invariant”

HOA

* In ML: symmetries of distributions, label functions, parameter spaces

» Knowledge of symmetry provides a strong inductive bias

« Example: Laws of physics are almost completely determined by a handful of symmetries



Invariance vs Equivariance

The “Picasso Problem”:

Why invariance is not enough in DL

Image credit: Ninara on flickr
https://www flickr. com/photos/nlnara/35077385225



Equivariant Networks
General setup

Ingredients:

» Feature spaces X

* Maps f; between them (“Layers”)

« Agroup G

» Group representations (“Transformation laws”)
T, of G for each feature space X;

Equivariance

fioTi1(g) = Ti(g) o f:




A Design Principle for Neural Network Architectures

Equivariance to Symmetry Transformations

Examples
: Signals on Graphs, Signals on Signals on manifolds /
Images, Audio, ... .
Point Clouds homogeneous space meshes
: Translations; : : Structure group G &
Symmetries Rotations Permutations Global symmetries G Gauge group Aut(P)
Architecture CNNs; G-CNNs  Graph NNs, PointNet Gl ESLNEITES e Gauge CNNs

(G-CNNs)



Overview of
Equivariant Nets



Regular G-CNNs

(-*pe¥)

T.S. Cohen & M. Welling, Group Equivariant Convolutional Networks. ICML 2016




Regular G-CNNs in 3D

Application to pulmonary nodule detection in CT scans
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Figure 4: FROC curves for all groups per training set size.

M. Winkels, T.S. Cohen, Pulmonary Nodule Detection in CT Scans with Equivariant CNNs, Medical Image Analysis, 2019
M. Winkels, T.S. Cohen, 3D G-CNNs for Pulmonary Nodule Detection. MIDL 2018.
D. Worrall, G. Brostow, CubeNet: Equivariance to 3D Rotation and Translation. ECCV 2018



DNA Sequences

» Reverse-complement symmetry

AAAACCCTTG

CAAGGGTTTT

« 7 x C3 Equivariant CNN

* Lunter, G., & Brown, R. An Equivariant Bayesian Convolutional Network predicts recombination hotspots and accurately
resolves binding motifs, Bioinformatics, Volume 35, Issue 13, 2019



Steerable CNNs, Harmonic & Tensor Field Networks

top view side view top view stabilized side view stabilized

input (scalar field)

output (scalar field)

output (vector field)

https://www.youtube.com/
watch?v=ENLJACPHSEA

Cohen, T. S., & Welling, M. (2017). Steerable CNNs. In /CLR.

Worrall, D. E., Garbin, S. J., Turmukhambetov, D., & Brostow, G. J. (2017). Harmonic Networks: Deep Translation and Rotation Equivariance. In CVPR.

M. Weiler, W. Boomsma, M. Geiger, M. Welling, T.S. Cohen, 3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data, NIPS, 2018

Thomas, N., Smidt, T., Kearnes, S., Yang, L., Li, L., Kohlhoff, K., & Riley, P. (2018). Tensor Field Networks: Rotation- and Translation-Equivariant Neural Networks for 3D Point Clouds.
Kondor, R. (2018). N-body Networks. a Covariant Hierarchical Neural Network Architecture for Learning Atomic Potentials. arXiv.

T. Son Hy, S. Trivedi, B.M. Anderson, R. Kondor (2018). Predicting Molecular Properties with Covariant Compositional Networks, JCP special issue on data enabled theoretical chemistry..,
https://atomicarchitects.github.io


https://www.youtube.com/watch%3Fv=ENLJACPHSEA

E(2) & E(3) Steerable CNN

feature map stabilized view

input

feature fields stabilized view

input

https://github.com/QUVA-Lab/e2cnn

https://github.com/e3nn/e3nn
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https://github.com/e3nn/e3nn
https://github.com/e3nn/e3nn

Spherical CNNs

Omnidirectional vision

Earth sciences! Cosmology

T.S. Cohen, M. Geiger, J. Koehler, M. Welling, Spherical CNNs. ICLR 2018.

Esteves, C., Allen-Blanchette, C., Makadia, A., & Daniilidis, K. Learning SO(3) Equivariant Representations with Spherical CNNs, ECCV 2018.
Kondor, R., Lin, Z., & Trivedi, S. Clebsch-Gordan Nets: A Fully Fourier Space Spherical Convolutional Neural Network. NeurlPS 2018

.. and many more

By User Dragons flight (Wikimedia Commons, based on) [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons



https://creativecommons.org/licenses/by-sa/3.0

Equivariance of Spherical CNNs

o rotation

T.S. Cohen, M. Geiger, J. Koehler, M. Welling, Spherical CNNs. ICLR 2018.

[ rotation
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Gauge, manifold & mesh CNNs
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D. Boscaini, J. Masci, S. Melzi, M.M. Bronstein, U. Castellani, and P. Vandergheynst, Learning class-specific descriptors for deformable shapes using localized spectral convolutional networks. CGF 2015
J. Masci, D. Boscaini, M.M. Bronstein, and P. Vandergheynst, Geodesic convolutional neural networks on riemannian manifolds. (ICCVW, 2015

T.S. Cohen, M. Weiler, B. Kicanaoglu, M. Welling, Gauge Equivariant Convolutional Networks and the Icosahedral CNN, ICML 2019

P. de Haan, M. Weiler, T. Cohen, M. Welling, Gauge Equivariant Mesh CNNs.: Anisotropic convolutions on geometric graphs, 2020 .

B. Kicanaoglu, P. de Haan, T. Cohen, Gauge Equivariant Spherical CNNs, 2020



Graphs & Point Clouds

* Point clouds are sefs of points, so ordering of points is not meaningful
* Point Nets are in/equivariant to permutations

* Graphs can be defined by a sefof nodes and a set of edges, so again order is not

meaningful

« Many graph nets represent graph as a /inear structure, i.e. adjacency matrix which can be added / scaled
 Layers are permutation equivariant and linear in the node features & adjacency matrix

Qi, C. R.,Yi, L., Su, H., & Guibas, L. J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. NIPS 2017
Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R., & Smola, A. Deep Sets. NIPS 2017
Maron, H., Ben-Hamu, H., Shamir, N., & Lipman, Y. /nvariant and Equivariant Graph Networks. ICLR 2018



General Theories

» Key questions:

» Classification of equivariant linear maps
* Universal approximation theorems

° Homogeneous Spaces.

» Kondor, R., & Trivedi, S. On the Generalization of Equivariance and Convolution in Neural Networks to the Action of
Compact Groups. ICML 2018

» Cohen, T., Geiger, M., & Weiler, M. A General Theory of Equivariant CNNs on Homogeneous Spaces. NeurlPS 2019

* Mackey, G. W. (1968). /nduced Representations of Groups and Quantum Mechanics.

* General manifolds / Gauge CNNs:
« Coming soon to an ArXiv near you

» Graphs, sets & other discrete structures
» Maron, H., Fetaya, E., Segol, N., & Lipman, Y. On the Universality of Invariant Networks. ICML 2019
» Segol, N., & Lipman, Y. (2019). On Universal Equivariant Set Networks. ArXiv:1970.02421.
» Keriven, N., & Peyré, G. (2019). Universal Invariant and Equivariant Graph Neural Networks. NeurlPS 2019
* Ravanbakhsh, S. (2020). Universal Equivariant Multilayer Perceptrons. ArXiv:2002.02912

» Thiede, E. H., Hy, T. S., & Kondor, R. (2020). The general theory of permutation equivariant neural networks and higher
order graph variational encoders. ArXiv:2004.03990.



Natural Graph Networks



Collaboration

Pim de Haan Taco Cohen Max Welling
Qualcomm Al Research Qualcomm Al Research Qualcomm Al Research
Qualcomm Technologies Netherlands B.V. Qualcomm Technologies Netherlands B.V. QUVA, University of Amsterdam
University of Amsterdam CIFAR

Qualcomm Technologies Netherlands B.V.
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Graph Neural Networks

» Graphs are everywhere:
» World wide web

* Telecommunication networks
« Social networks

* Molecular graphs

* Knowledge graphs

» Road maps

* Protein interaction networks

* Fully-connected Neural networks are good at processing vectors (no symmetry)
* (G-)CNNSs are good at processing spatial signals (geometrical symmetries)

 For graphs, we need graph networks that respect the relevant symmetries



Graph Convolutional Neural Networks

« Pass messages to neighbours on the graph

* Linear function



Limits of conventional Graph CNNs

Fail on regular graphs

Xu et al: How Powerful are Graph Neural Networks? (2018)

26



Source-aware features

* Detecting difference requires feature to remember where message came from

27



Conventional Graph CNNs

Vg = z pr

PqEE
Same kernel on each edge

Invariant under permutation of neighbours
Kernel independent on graph

Kernel restricted by permutation group
Limited expressivity

Natural Graph Networks

_ g
Yq = z Kpq Xp

PQEE
Different kernel on different edges

Sensitive to permutations of neighbours
Kernel depends on graph

Kernel restricted by symmetry of graph
Most general convolution



Graph Equivalences & Symmetries

« Graph isomorphism

0:G—=G,¢:V—=V'st (pq) € Es (o(p),d(q) € E

R Cos
LT TN, Y,

Automorphism = Symmetry



Equivariance
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Equivariant Message Passing

g’



Equivariant Message Passing with Local Symmetries




Feature space: neighbourhood gauges

Up Pp(g)_l’vp

Gauge transformation
2 by g = (23) 3
> @—r-

5) 1

- @
-®
AN

Kondor et al: Covariant
Compositional Networks
For Learning Graphs (2018)

Cohen et al: Gauge
Equivariant CNNs (2019)
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Analogy

- -
N
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Algorithm

* Precompute:

1. Define node and edge neighbourhoods

2. Classify edge neighbourhood isomorphism classes
3. Compute edge automorphisms

4. Solve kernel constraint, initialise params

* During training:

1. Linearly combine kernel solutions using parameters
2. Transport kernels by isomorphisms

3. Compute convolution



Relation to prior work

* Node neighbourhood trivial = graph CNN

* Rectangular grid / icosahedral graph = planar / icosahedral equivariant CNN

» Cohen & Welling: Group Equivariant Convolutional Networks (2016)
» Cohen et al: Gauge Equivariant Convolutional Networks and the lcosahedral CNN (2019)

« Kondor et al: Covariant Compositional Networks For Learning Graphs (2018)

* Node neighbourhood size increases by depth
» Kernel constrained by permutation group, instead of automorphism group

« Maron et al: Invariant and Equivariant Graph Networks (2019)

* Represents entire graph as linear structure with permutation equivariance
* Not message passing algorithm



Synthetic experiments
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Preliminary Experiment: QM9 molecule predictions

ENN-S2S
Gilmer et al

(2017)

0.040

Vv
G 0.019
0.069
0.017
0.037
0.180
0.019

0 0.019
ZPVE 0.0015

Average rank i

CCN
Kondor et al
(2018)

0.23
0.29
0.54
0.30
0.53
0.19
0.29
0.29
0.39

IncidenceNet
Albooyeh et al
(2019)

0.019
0.001
0.073
0.001
0.049
0.010
0.001
0.001
0.006
1.4

0.027
0.010
0.07
0.012
0.05
0.040
0.012
0.009
0.0075
2.2
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Natural Graph Networks: Summary

» Graph networks must respect graph symmetries
« Graph symmetries = autmomorphisms # permutation of nodes

 Exploting local symmetries leads to more powerful graph networks



Mathematical Theory

Category Theory: The Future of Deep Learning & Al



Category Theoretic Formulation

Category

* General description of:
- Natural Graph Networks Objects Ob(C)
« Homogeneous G-CNNs Morphisms / arrows f: a -> b
« Gauge CNNs Associative composition rule
o _ |dentity morphisms
 Basic ingredients:
» Category C of node neighbourhoods
» Objects: “points with associated data”, arrows: “ways of transporting data between (some) points”
» Category D of edge neighbourhoods
» Objects: “messages”, arrows: “local symmetry / weight sharing”
» Functors FO, F1: D -> C, that map edge to source/target
* Maps message to source/target, maps arrows in D to arrows in C
* Principal groupoid P and category A of associated feature spaces on nodes
* Functor T: C -> P (equivariant path lifting)
» Functor R : P -> A (associated vector bundle functor; defines representation space)
» Network layer is a natural transformation K : RoT' o Fy = RoT o I}

47



Equivariance: it's only natural

» Group: a category with one object in which each morphism is an isomorphism
G: (&,

e Linear representation: a functor from group G to the category of vector spaces

® P Rn Associates to each object of G an
object of Vec

e L]

D [ } Associates to each arrow of G an / /
arrow of Vec, such that ( ) ( ) — ( )

) [ } composition is preserved: PY)P\g P Yy

 Equivariant linear map: natural transformation between functors (representations)
P(®) i>ﬁ(o)

Associates to each object of G an

arrow of Vec, such that for every P ( g) P (g ) <f; ;-‘

morphism g in G, we have:

p(®) _ e, (@)

48



The category of node neighbourhoods

* Given graph G = (V, E)

* Define a category C:
«Ob(C)=V
» With each node, associate a neighbourhood (chosen in a consistent manner)
* Introduce an arrow x ->y for each isomorphism from the neighbourhood of x to the neighbourhood of y that maps x to y.
* “Rooted isomorphisms”
 For given objects x, y, there could be n >= 0 such arrows.

* Note:

» Arrows must be composable; in this case this is defined as composition of graph isomorphisms.
» The category includes at least one arrow x -> x for each node x (the identity).

 Additionally, when the neighbourhood has symmetries, it includes arrows x -> x for each neighbourhood automorphism
» The category C is a groupoid, because all arrows are isomorphisms



The category of edge neighbourhoods

* Given graph G = (V, E)

 Define a category D:
«Ob(D)=E
» With each edge, associate a neighbourhood (chosen in a consistent manner)
* Introduce an arrow e -> e’ for each isomorphism from the neighbourhood of e to the neighbourhood of e’.
* For given e, €', there could be n >= 0 such arrows.

* Note:

« Arrows must be composable; in this case this is defined as composition of graph isomorphisms.
» The category includes at least one arrow e -> e for each edge e (the identity).

 Additionally, when the neighbourhood has symmetries, it includes arrows e -> e for each neighbourhood automorphism
» The category D is a groupoid, because all arrows are isomorphisms



Source & Target Functors

- Define two functors Fy, Fy : D — C

* Functor maps both objects and arrows:
- let€ : X — Y and 6 :IZ‘ — y be isomorphic objects in D (i.e. edges with iso neighbourhoods)

-k F_

Map on objects Fo(e) == Fi(e) =y
Map on arrows Fole »€') =2 — 2 File—e)=y—y

* Check functor axioms:

» Maps objects of D to objects of C (edge neighbourhoods to node neighbourhoods)
» Maps morphisms of D to morphisms of C (edge isos tot node isos), such that:

* F(fog)=F(f) o F(g)

* F(id_e) =id_F(e)

* Node neighbourhood should be a subset of edge neighbourhood, so that there is
a natural definition of F,, F, by restriction of graph isomorphism.
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Principal and Associated Bundles

* Principal bundle groupoid P:
* Ob(P) = (Py, G,) for x in ob(C). P, contains all neighbourhood labelings. G, permutes labels.
* Morphisms are equivariant maps P, -> P, plus group homomorphisms G, -> G,

* Transport functor T : C-> P

« Lifts edges to equivariant maps

* Associated bundle A:

» Associates with each node x in ob(C) a feature space V,, acted on by a representation rho of G,

* Representation functorR: P -> A



Network Layer: Natural Transformations

« Kernel is a natural transformation between functors:
» Source feature space: Qo= RoT ol
« Target feature space: ()1 = RoT1 o F}

« Natural transformation: K : QO = Ql

* Definition of natural transformation:
- K assigns to each object e = (x, y) of D a morphism (linear map) K, : Qy(e) — Q1 (e)
» Such that the following diagram commutes (naturality)

Qole 4> Q1(e

lQ()f J/Qlf

Qo(e’) —> Q1(e

- For all edge isomorphisms & : e — €’



Application to Homogeneous & Gauge CNNs

» The same framework describes homogeneous G-CNNs and Gauge CNNs

» Choice of C determines where the data lives
» Choice of D determines how messages are passed (objects) and how weights are shared (morphisms)

° Homogeneous case.

« C : points x in a manifold with morphisms x -> gx for g in G

« D: pairs (X, y), with morphisms (x, y) -> (gx, gy)

* R : induced representation functor

» K: natural transformation = intertwiner between induced representation (= conv layer)

« Gauge CNN case:
« C : points x in a manifold with morphisms x -> y paths
* D : geodesics x >y
* R, T : associated vector bundle, parallel transport
« K : natural transformation = gauge invariant linear map



Conclusions

« Equivariance is a natural design principle for neural networks
 Applicable to planar images, sighals on homogeneous spaces & manifolds, graphs, etc.

* New framework: natural graph networks
« Fundamentally more flexible than invariant message passing methods

- Mathematical theory
 Categorical formulation
* Opens up a large design space for natural networks
» Covers graphs, homogeneous spaces, general manifolds, and more in a uniform manner
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