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My recent Physics (] ML work

Diverse set of projects

e QCD-aware jet classifiers for the LHC with Tree and Graph based NNs
e ML for precision measurements at the LHC data analysis, e.g. eftective tield theory
e Probing dark matter substructure with strong gravitational lenses

e Probabilistic programing for LHC data analysis

e ML to model the Quantum Density Matrix
e ML for Lattice Field Theory

e Hamiltonian + ODE + GraphNNs for dynamical systems

e GraphNNs + Symbolic regression for dynamical systems

e Dynamical programming and RL for probabilistic treatment of hierarchical clustering

What do these projects have in common?



My recent Physics (] ML work

What do these projects have in common?
e Several are aimed at import physics questions, but...

e Many are explorations to refine (my) understanding of the pros and cons and
different approaches to modeling / inference / science / Al

* Traditional physics-based approaches (mechanistic)

* Black box machine learning (function approximation, prediction)
This exploration has
e Ledto some interesting insights into Al / ML, and

e Retined my thinking about physics (and the philosophy of science)



Abstract

Instead of focusing on a specitic application, | will discuss a few projects that

explore the Physics n ML Interface.

e How do we incorporate our physical insight into the underlying causal
mechanism into the inductive bias of machine learning architectures?

* |s that helpful or necessary?
e Why do we care it a model is interpretable?

 \Where do we stand on the spectrum between ML-supercharged data analysis
and an Al / robot scientist?

e How does this line of thinking influence research in Al and ML?



Theory Data




Traditional approaches in physics

* hand-crafted data analysis

* [argely guided by expert knowledge
and theoretical insights




Big Data & Deep Learning
* eschew feature engineering

e end-to-end learning
® data-driven
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Machine Learning for Physics and the Physics of Learning
SEPTEMBER 4 - DECEMBER 8, 2019

2% PARTICIPANT LIST B ACTIVITIES /| APPLICATION

Overview

Machine Learning (ML) is quickly providing new powerful tools for physicists and chemists to extract essential
information from large amounts of data, either from experiments or simulations. Significant steps forward in
every branch of the physical sciences could be made by embracing, developing and applying the methods of

machine learning to interrogate high-dimensional complex data in a way that has not been possible before.

As yet, most applications of machine learning to physical sciences have been limited to the “low-hanging
fruits,” as they have mostly been focused on fitting pre-existing physical models to data and on discovering
strong signals. We believe that machine learning also provides an exciting opportunity to learn the models
themselves—that is, to learn the physical principles and structures underlying the data—and that with more
realistic constraints, machine learning will also be able to generate and design complex and novel physical

structures and objects. Finally, physicists would not just like to fit their data, but rather obtain models that are

physically understandable; e.g., by maintaining relations of the predictions to the microscopic physical
quantities used as an input, and by respecting physically meaningful constraints, such as conservation laws or

symmetry relations.

The exchange between fields can go in both directions. Since its beginning, machine learning has been inspired by methods from statistical physics. Many
modern machine learning tools, such as variational inference and maximum entropy, are refinements of techniques invented by physicists. Physics,
information theory and statistics are intimately related in their goal to extract valid information from noisy data, and we want to push the cross-pollination

further in the specific context of discovering physical principles from data.
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A toy example
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A toy example

lmagine the entire board is
slightly tilted, which biases the
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The probability of ending in bin & corresponds to the total probability of all the observe X

paths z from start to .

p(z]0) = / p(w,ZIH)dzz (Z) 9% (1 — O)"* ‘
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The actual situation is much more complicated.

It's not a Binomial distribution!
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Simulation—based inference

Parameters Observables
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Prediction (simulation): e Well-understood mechanistic model

e Simulator can generate samples
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Simulation—based inference

Parameters Observables
0 —_— 2 —_— T

Prediction (simulation): e Well-understood mechanistic model

e Simulator can generate samples

Inference: o Likelihood function p(z|#)is intractable

e Goal: estimator p(z|0)



Science is replete with high-fidelity simulators

Particle Neuron Foidem; Gravitational Evolution of
colliders activity HPIGCIIIES lensing the Universe

| | | | | | | | | | | | | | | |
10-*® 107 107** 107° 107% 107 10" 103 109 10? 102 10*°  10'®  10%Y 10%*  10°%7
Length scale [m]

Simulators are implicit, causal, generative models that can produce synthetic data

[Cranmer, Brehmer, Louppe PNAS (2020), arXiv:1911.01429 ]


https://arxiv.org/abs/1911.01429

ICML 2017 Workshop on Implicit

Models

Workshop Aims

Probabilistic models are an important tool in machine learning. They form the basis for models that generate realistic data, uncover hidden
structure, and make predictions. Traditionally, probabilistic models in machine learning have focused on prescribed models. Prescribed models
specify a joint density over observed and hidden variables that can be easily evaluated. The requirement of a tractable density simplifies their
learning but limits their flexibility --- several real world phenomena are better described by simulators that do not admit a tractable density.

SR N M e o PRI Sy

Probabilistic models defined only via the simulations thy ’produce are called implicit models.

Arguably starting with generative adversarial networks, research on implicit models in machine learning has exploded in recent years. This
workshop’s aim is to foster a discussion around the recent developments and future directions of implicit models.

Implicit models have many applications. They are used in ecology where models simulate animal populations over time; they are used in phylogeny,
where simulations produce hypothetical ancestry trees; they are used in phyS|cs to generate particle simulations for high energy processes.

Recently, implicit models have been used to improve the state-of-the-art in image and content generation. Part of the workshop s focus is to discuss
the commonalities among applications of implicit models.

Of particular interest at this workshop is to unite fields that work on implicit models. For example:

= Generative adversarial networks (a NIPS 2016 workshop) are implicit models with an adversarial training scheme.

= Recent advances in variational inference (a NIPS 2015 and 2016 workshop) have leveraged implicit models for more accurate approximations.
= Approximate Bayesian computation (a NIPS 2015 workshop) focuses on posterior inference for models with implicit likelihoods.

= Learning implicit models is deeply connected to two sample testing, density ratio and density difference estimation.

We hope to bring together these different views on implicit models, identifying their core challenges and combining their innovations.
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G. Louppe, Joeri Hermans, & K.C. AISTATS 2019 arXiv:1707.07113



G. Louppe, Joeri Hermans, & K.C. AISTATS 2019 arXiv:1707.07113

Adversarial Variational Optimization

Similar to GAN setup, but instead of using a neural

Adversarial Variational Optimization network as the generator, use the actual simulation

of Non-Differentiable Simulators

(Joer Hermans (JKole Crammer Continue to use a neural network discriminator / critic.

La(P) = Exp,.(x) |— log(d(x; ¢))] L4(0) = Expx|e) [log(1l — d(x;9))],
Expx|e) [—log(l — d(x; 9))]

Difficulty: the simulator isn’t differentiable, but there’s a trick!
Variational optimization + REINFORCE gradients

mein 1(0) < Egqo)|f(0)] = U(9)

VypU() = Eggop) [f(0)Vy log q(0]4)]

o O Tom is D Proposal g(8|1)) concentrates around 6*. Allows us to efficiently

Ua(®) = Eonq(o)p)[La(P)]
Ug(¥) = Borg(o)5) L4 (0)] But point estimates only, not posterior p(0|x) @

fit the simulation with stochastic gradient techniques!




A review Published in Proceedings of the National Academy of Sciences

The frontier of simulation-based inference

Kyle Cranmer®"'!, Johann Brehmer®", and Gilles Louppe®

Gilles Louppe

2Center for Cosmology and Particle Physics, New York University, USA; P Center for Data Science, New York University, USA; “Montefiore Institute, University of Liége, Belgium

April 3, 2020
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https://arxiv.org/abs/1911.01429

Two approaches simulation-based inference

Use simulator Learn simulator

(much more efticiently) (with deep learning)

conv (180w + 5b)

e non-linear

maxpool  conv (450w + 10b)

hon-linear

S e~

/

hon-linear

eeceeeceeece

maxpool

EREEEEE T
OODROODOC®

fully-connected @
(1600w + 10b)

 Approximate Bayesian Computation (ABC) e |ikelihood ratio trick (with classitiers)

e Probabilistic Programming e Conditional density estimate

. o L with normalizing flows
e Adversarial Variational Optimization ( S )

e |earned summary statistics


https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/

Going beyond engineered summary statistics

parameter

arXiv:1805.12244
PRL, arXiv:1305.00013
PRD, arXiv:1805.00020
arXiv:1808.00973

physics.aps.org/articles/v11/90
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Simulation Machine Learning Inference

The surrogate for the likelihood (ratio) used tor inference

A 2-stage process:
1. learning surrogate (amortized)
2. Inference on parameters of simulator


https://physics.aps.org/articles/v11/90

Likelihoods, likelihood ratios, and posteriors

We can target different quantities to be used as a surrogate for inference
 Unsupervised learning typically used to learn likelihood with density estimation

e Supervised learning can be used to learn likelihood ratio (or posterior)

Amortized likelihood Amortized posterior Amortized likelihood ratio

proposal |«--------mo-ooooooo | [ prior > proposal |[e------------------- : proposal  [-------somoooooeooy

6 6
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Simulating particle physics processes

1 1 1
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Kinetic energies and self-interactions of the gauge hosons
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Kinetic energies and electroweak interactions of fermions
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interactions between quarks and gluons femmion masses and couplings to Higgs



Simulating particle physics processes
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Simulating particle physics processes

Parton-level Theory
momenta parameters
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Simulating particle physics processes

Theory
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Parton-level
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Simulating particle physics processes

| atent variables

Detector Shower Parton-level Theory
Interactions splittings momenta parameters

e E| 2 trON

e Charged Hadron {e.g. Pion)

— — — - Neutral Hadron {e.g. Neutron)
= = = Photon

[ =

[

C

| S S —
I

Evolution
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Simulating particle physics processes

Detector Shower Parton-level Theory

Observables . . L
Interactions splittings momenta parameters

r — y — 25 — Z; —— )

A ———————————————————————
Evolution



Simulating particle physics processes

Detector Shower Parton-level Theory

Observables . . L
Interactions splittings momenta parameters

r — 2y — 2 — Z;, —

Sample from plzlz4) p(2al2s) p(2s2) p(2p16)

MADGRAPHS _aMCO@ENLDO

X X
X X X X

IIIIIIIIIIIIIIII

Prediction (simulation)



Simulating particle physics processes

Detector Shower Parton-level Theory
Observables . . e
Interactions splittings momenta parameters
T Rg —— 2y — Z;, —— ()
pal6) = [z [z, [az, plalz p(zal2,) Pzl p(z16)

—
Inference



Simulating particle physics processes

Detector Shower Parton-level Theory

Observables . . L
Interactions splittings momenta parameters

2 —— 2y — 2 — )

p(x|f) = /dzd/sz/dzp p(x|zq) p(z4|zs) p(2s|2p) p(2p|0)

It's infeasible to calculate the
integral over this enormous space!

Inference



Impact on Studies of The Higgs Boson

q -
W, Z
42-Dim observable x
W, Z
.-

Exciting new physics might hide here!
We parameterize it with two coefficients:

B Nwl 19 0t a4 e ra fow| 9° , .+ 0 Tiruva
L = Lou +35] 5 (D 0) 02 Do W, |75 2 (oto) Wi, W
# #

Ow Oww

J Brehmer, J Pavez, G Louppe, K.C. PRL & PRD 2018 [arXiv:1805.00013 & arXiv:1805.00020], CARL [arxiv:1506.02169]



http://arxiv.org/abs/1506.02169

Impact on Studies of The Higgs Boson

(based on a 42-Dim observation X)
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J Brehmer, J Pavez, G Louppe, K.C. PRL & PRD 2018 [arXiv:1805.00013 & arXiv:1805.00020], CARL [arxiv:1506.02169]
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Impact on Studies of The Higgs Boson

Massive gains in precision of a flagship measurement at the LHC |

Equivalent increasing data collected by LHC by several factors

parameter >

|

observable

= .

pp — WH — (v bb

~

C'yp Profiled
L =300fb!

latent z’ ‘ \Xgé S
O \\\
o & S e Lty r(x. 2|0 > D ‘.‘\§\
e T arg min Llg) —» 7(x]0) ——p =T 0- RN
.., : —> t(ﬂj, z 9) > g approximate Q : \‘\\
augmented data likeliﬁood \ \\\
rati y r
atio _1 - ‘.' \ \\
Simulation Machine Learning S : / \
\\ ' — 1 = I
_2 7 \\~~~ _f’l
31 —— Imp. STXS
| | | |
-1 -0.9 0 0.5 1

[J. Brehmer, S. Dawson, S. Homiller, F. Kling, T. Plehn 1908.06980]
[J. Brehmer, F. Kling, I. Espejo, K. Cranmer 1907.10621]




Impact on Studies of The Higgs Boson

Massive gains in precision of a flagship measurement at the LHC |

Equivalent increasing data collected by LHC by several factors
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lmpact on science: Dark Matter

We can learn about the particle nature of dark matter by looking for subtle
statistical signatures in images of gravitationally lensed galaxies

galaxy cluster

Sid Mishra-Sharma Johann Brehmer  Gilles Louppe  Joeri Hermans


https://arxiv.org/abs/1909.02005

Dark Matter Substructure

Abundance of*DM subhalos vs mass:

10° 1010 101! 1012 1013 1014
M [h! Mo]

[R. Dunstangt al 1109.6291]

[T¥Brown, J.Tumlinson]



Simulation-based inference tor strong lensing

2 parameters 6 = (5, fsub)
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P (msub | :B ’ fsub)




Simulation-based inference tor strong lensing

Simulator

2 parameters 6 = (5, fsub)
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> Latent 2
source / lens properties,
subhalo masses / positions, ...

P (msub | :B ’ fsub)




Simulation-based inference tor strong lensing

Simulator

642 observables x

y

2 parameters 6 = (3, foub)

p
K, —
I

> Latent 2
source / lens properties,
subhalo masses / positions, ...

\

P (msub | :B ’ fsub)




Simulation-based inference tor strong lensing

642 observables x
Simulator

2 parameters 6 = (3, foub)

p
K, —
I

> Latent Z:
source / lens properties,
subhalo masses / positions, .

P (msub | :B ’ fsub)

Prediction: We construct a simulator that can sample x ~ p(x|6)



Simulation-based inference tor strong lensing

642 observables x
Simulator

2 parameters 6 = (3, foub)

p
K, —
I

> Latent Z:
source / lens properties,
subhalo masses / positions, .

P (msub | :B ’ fsub)

Prediction: We construct a simulator that can sample x ~ p(x|6)

‘“-—

Inference:  We train neural likelihood ratio estimators 7 (x|6)



Posterior from amortized likelihood ratio

Watch how the posterior for two population

parameters concentrate around true value usea
to generate mock data.
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Gravitational Wave Astronomy

Log likelihood-to-evidence ratio [

T

3 layers of 200 units

N

Concatenation of 19
N

Stack of
13 blocks
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Convolutional

layers
AN

Conv. layer
AN

H1/L1 strains

Black hole

Spacetime

Gravitational wave

Mirror

Lightning-Fast Gravitational Wave Parameter
Inference through Neural Amortization

Delaunoy, Wehenkel, Hinderer, Nissanke, Weniger, Williamson, Louppe
[arXiv:2010.12931]
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cosmology nd astrophysics

)«\3 Physics n ML

’ a virtual hub at the interface of theoretical physics and deep learning.

10 Physics meets ML to solve cosmological inference

Feb 2021 Ben Wandelt, Institut d’Astrophysique de Paris / Institut Lagrange, Sorbonne University
and Center for Computational Astrophysics, Flatiron Institute, New York, 12:00 EDT

Abstract: The goal of cosmological inference is to learn about the origin, composition, evolution, and
fate of the cosmos from all accessible sources of astronomical data, such as the cosmic microwave
background, galaxy surveys, or electromagnetic and gravitational wave transients. Traditionally, the
field has progressed by designing and modeling intuitive summaries of the data, such as n-point
correlations. This traditional approach has a number of risks and limitations: how do we know if we
computed the most informative statistics? Did we forget any summaries that would have provided
additional information or break parameter degeneracies? Did we take into account all the ways the
model is affecting the data? To be feasible, the traditional approach imposes approximations on the
statistical modeling (e.g. the likelihood form) and on the physical modeling. | will discuss a new
mode of cosmological inference: simulation-based, full-physics modeling, made feasible through
multiple advances in 1) machine-learning, 2) in the way we design and run simulations of
cosmological observables, and 3) in how we compare models to data. The goal is to use current and
next generation data to reconstruct the cosmological initial conditions and constrain cosmological
physics much more completely than has been feasible in the past. | will discuss current status, and
ways to meet the new challenges inherent in this approach, including robustness to model
misspecification.

¢ Physics n ML

’ a virtual hub at the interface of theoretical physics and deep learning.

O 4 Flow-based likelihoods for non-Gaussian inference.

Nov2020  Ana Diaz Rivero, Harvard University, 12:00 EDT

Abstract: We investigate the use of data-driven likelihoods to bypass a key assumption made in
many scientific analyses, which is that the true likelihood of the data is Gaussian. In particular, we
suggest using the optimization targets of flow-based generative models, a class of models that can
capture complex distributions by transforming a simple base distribution through layers of
nonlinearities. We call these flow-based likelihoods (FBL). We analyze the accuracy and precision of
the reconstructed likelihoods on mock Gaussian data, and show that simply gauging the quality of
samples drawn from the trained model is not a sufficient indicator that the true likelihood has been
learned. We nevertheless demonstrate that the likelihood can be reconstructed to a precision equal
to that of sampling error due to a finite sample size. We then apply FBLs to mock weak lensing
convergence power spectra, a cosmological observable that is significantly non-Gaussian (NG). We
find that the FBL captures the NG signatures in the data extremely well, while other commonly-used
data-driven likelihoods, such as Gaussian mixture models and independent component analysis, fail
to do so. This suggests that works that have found small posterior shifts in NG data with data-driven
likelihoods such as these could be underestimating the impact of non-Gaussianity in parameter
constraints. By introducing a suite of tests that can capture different levels of NG in the data, we
show that the success or failure of traditional data-driven likelihoods can be tied back to the
structure of the NG in the data. Unlike other methods, the flexibility of the FBL makes it successful at
tackling different types of NG simultaneously. Because of this, and consequently their likely
applicability across datasets and domains, we encourage their use for inference when sufficient
mock data are available for training.



A profound shift

Scientific simulators are based on well-motivated mechanistic models

e However, the aggregate eftect of many interactions between their low-level
components leads to intractable inverse problems

The developments in machine learning have the potential to eftectively bridge the
microscopic - macroscopic divide & aid in these inverse problems

* They can provide effective models for macroscopic (emergent) phenomena that
are tied back to the low-level microscopic (reductionist) model

38



Notice in the next few slides | will be agnostic to
the architectures of the ML models!

Do we care”



Machine Learning = Applied Calculus of Variations




NN = A highly Flexible Family of Functions

In calculus of variations, the optimization is over all functions: § = argmin L|s]
S

e |n applied calculus of variations, we consider a highly flexible family of functions s4 and
optimize: i.e. ¢ = argmin L[sy| and § & S4
¢

e Think ot neural networks as a highly flexible family of functions

e Machine learning also includes non-convex optimization algorithms that are eftective even
with millions of parameters!
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Machine learning = Applied Calculus of Variations

é‘ Kyle Cranmer added 3 new photos — with Sarah Demers

al Konezny and Paul Tipton.
April 20, 2016 - New Haven, CT - A =

Seminar at Yale today. Felt good to talk about new ideas... Equally
confusing for theorists and experimentalists &,

Machine Learning = Applied Calculus of Variations

2 Deriving BP using the
Hamiltonian/Lagrangian
formalism

2.1 Notations

For the sake of clarity, we will introduce the formal-
Ism in a simple case. A more general formulation
will be presented afterwards. It will be assumed that
the network 1s composed of a number of layers con-
nected 1in a feed-forward manner. Furthermore, we
make the assumption that connections cannot skip

layers. These assumptions can be easily relaxed [le
Cun, 1987].

Yann LeCun Deep learning = calculus of variations
Backprop is like the Langrangian formulation of classical mechanics.

Y. LeCun: A theoretical framework for Back-Propagation, in Touretzky, D. and
Hinton, G. and Sejnowski, T. (Eds), Proceedings of the 1988 Connectionist
Models Summer School, 21-28, Morgan Kaufmann, CMU, Pittsburgh, Pa,
1988.

http://yann.lecun.com/exdb/publis/index.html#lecun-88

——

[bib2web] Yann LeCun's Publications

S YANN.LECUN.COM

Like - Reply - Remove Preview - ) 2 - April 20, 2016 at 2:30am

& Kyle Cranmer | guess this counts as an endorsement for this point of
view &

Many physicists (particularly theoretical ones) are skeptical of
machine learning because it usually is explained to them in some ad
hoc way (neurons, etc). But minimizing a loss function(al) is much
more palatable.

Like - Reply - @ 2 - April 20, 2016 at 2:39am - Edited



[Cranmer, J. Brehmer, G. Louppe, PNAS (2020), arXiv:1911.01429 ]

From the review

unsupervised unsupervised X supervised 4 ; supervised
learning learning | learning : learning
‘ ff /1

' l

- J—. N L Tt
8 0 | |



https://arxiv.org/abs/1911.01429

[Hastie et al., 2001; Sugiyama et al., 2012; Cranmer et. al., 2015]

Likelihood Ratio Trick

REE VM e binary classifier: find function s(x) that minimizes loss:

sid. | |
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S A | | | .
R S e j.e. approximate the optimal classitier
: H
o) — il
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" i x|H 1
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e S(X) = p(z|Ho) s(x)




[Hastie et al., 2001; Sugiyama et al., 2012; Cranmer et. al., 2015]

Likelihood Ratio Trick

— o e binary classifier: find function s(x) that minimizes loss:
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Lef 00 Lo
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Parametrizing the Likelihood Ratio Trick

Can do the same thing for any two points 8, & 8, in parameter space 0.

p(z | 6p) 1
p(z | 61) s(x;0p,601)

T($7 (907 (91) —

Or train to classity data from p(x|0) versus some tixed reference p .¢(x)

p(zlf) _ 1

pref(x) S(QZ; 9)

r(x;0) =

| call this a parametrized classifier.

K.C., G. Louppe, J. Pavez: Approximating Likelihood Ratios with Calibrated Discriminative Classitiers [arXiv:1506.02169]


http://arxiv.org/abs/1506.02169

[Cranmer, J. Brehmer, G. Louppe, PNAS (2020), arXiv:1911.01429 ]

From the review
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unsupervised | ¢ unsupervised

4 supervised supervised
learning learning learning learning
b, ' ?

! !



https://arxiv.org/abs/1911.01429

Cranmer, Louppe (2016). DOI:10.5281/zenodo.198541

N e u r a ‘ ‘ | |< e ‘ | h O O d Papamakarios, Sterratt, Murray AISTATS 2019 [arXiv:1805.07226 |

Based on (8, x,) pairs with x, ~ p(x | 8,) estimate likelihood with a conditional density
estimator g,(x | 6)

e Cansample 8, ~ p(0) from any proposal distribution with appropriate support

e |everaging advances in normalizing flows and neural density estimation

Unifying generative models and exact likelihood-free Minimize th e ‘OSS
inference with conditional bijections
By Kyle Cranmer, Gilles Louppe 2016 L [q] — = Jp (X)lOg q (x)dx

Subject to Jq(x)dx =1

Sequential Neural Likelihood:
Fast Likelihood-free Inference with Autoregressive Flows

. A
George Papamakarios David C. Sterratt Iain Murray YI e ‘ d S Q(X) - p (x)

University of Edinburgh University of Edinburgh University of Edinburgh

AISTATS 2019
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Cranmer, Louppe (2016). DOI:10.5281/zenodo.198541
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e |everaging advances in normalizing flows and neural density estimation

Unifying generative models and exact likelihood-free Minimize th e ‘OSS
inference with conditional bijections 1 N
By Kyle Cranmer, Gilles Louppe 2016 L [q] — = Jp (X)lOg q (x)dx ~ N Z lOg ng(xl)

Subject to Jq(x)dx =1

Sequential Neural Likelihood:
Fast Likelihood-free Inference with Autoregressive Flows

. A
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Gold mining: augmenting the training data

Sample efficiency is a major concern for these methods as many simulators are
computationally expensive



Gold mining: augmenting the training data

Sample efficiency is a major concern for these methods as many simulators are
computationally expensive

Recently, we realized we can extract more from the simulator.
We can use augmented data to improve training

parameter (9

|

approximate
v I|kellhood
ratio

arg min L[g] — 7(x|0)
—> t(x, 2|0) 9

augmented data

Simulation Machine Learning

Brehmer, Louppe, Pavez, KC, PNAS (2019), arXiv:1805.12244
See also Wenliang, Moskovitz, Kanagawa, Sahani, ICML2020

Johann Brehmer  Gilles Louppe



Gold mining: augmenting the training data

Sample efficiency is a major concern for these methods as many simulators are

computationally expensive While implicit density is intractable

Recently, we realized we can extract more from the simulator. ) — A 0
We can use augmented data to improve training p($| ) T Zp(a:, Z‘ )

We can augment the simulator to

parameter (9 . .
calculate some guantities conditioned
® on latent z, which are tractable:
approximate
v Iikelihood . . . .
ratio Joint likelihood ratio:
arg min L[g] - 7(x|0
g (16) p(z, z|00)
r(z, z|0p,601) =
augmented data p(w, z 91)
Simulation Machine Learning and jOiﬂt SCore.
Vep(% Z|9)|9
0
t(x,z|0p) = ; = Vg logp(x, 2|0)|e,
Brehmer, Louppe, Pavez, KC, PNAS (2019), arXiv:1805.12244 p(x7 Z‘ O)

See also Wenliang, Moskovitz, Kanagawa, Sahani, ICML2020

Johann Brehmer  Gilles Louppe



The value of golo

We can calculate the joint likelihood ratio

7q($7 Z|907 (91) =

p(ma Zdy 25y Ap (90)

p(xa Zdy 25y AP (91)

We want the likelihood ratio function

p(x

0o)

r(x|0p,01) =

p(x

01)

(“How much more likely is this simulated event, including
all intermediate states, for 8 compared to 61?")

(“How much more likely is the observation x
for 8o compared to 6,?")



The value of golo

We can calculate the joint likelihood ratio

p(ﬂf, Zdy <5y Ap 90)

—— r(x|60,91)
T 20, Ze. 2|0 ch
p( y “dy #59y AP 1) o r(x,z|6g, 61), x ~ p(x]|60 = 6p)

r(x, z|0y,01) =

r(x, z|6o, 61), x ~ p(x|6 = 61)

r(x, 2|0y, 0,)are
scattered around
7“($|(9(), (91)

r(Xe, Ze|6o, 01), r(x|6o, 61)

We want the likelihood ratio function

_ p(z|bo)
o) = )




The value of golo

We can calculate the joint likelihood ratio

p(x, 24, Zs, 2p|00) With »(x, 2|0y, 01), we define a functional like

r(x, z|0y,01) =
o zenll) 2
7(x|0g,01)] /dx /dzp x, z|01) ( (2|09, 61) — r(x, 2|0, 01)) }

It is minimized by

r(xz|0p,01) = argmin L, |7 (x|0y, 01)]
7/’\‘(£E|9(),@1)

(And we can sample from p(x, z|6) by running the simulator.)

We want the likelihood ratio function

_ p(z|6o)
TN




The value of golo

We can calculate the joint likelihood ratio

_ plax, 24, 25, 2p|60) With 7(z, 2|0y, 01 ), we define a functional like
r(x, z|0y,01) =
(e, 2a 202 l00) :
(/0. 0,) /da: /dzp:c 2161) [(#(zl80,62) — r(x. 2|60, 601))?].
It is minimized by
r(xz|0p,01) = argmin L, |7 (x|0y, 01)]
7/”\‘(£E|90,@1)
(And we can sample from p(x, z|6) by running the simulator.)
.. and then magic . ( |
. pP\&, < 6)()
L ~op(z|2 ; 0 7‘9 = | d 0
et [ 100,01) [zt 0.6 Shwrn
We want the likelihood ratio function /d p(z, z01) p(z, z|60)
7“(517‘(9(), 91) — p(a;' 90) B (13‘91) (.CIL‘,Z (91)
p(x|01) = r(x(00,01) 1



Learning the score

Similar to the joint likelihood ratio, from the
simulator we can extract the joint score

t(x,z|00) = Vglogp(x, 24, 25, 2,|0)

We want the score

t(z]0o) = Vg log p(x|0)




Learning the score

Similar to the joint likelihood ratio, from the
simulator we can extract the joint score

t(z, z|00) = Vo log p(x, zd, 25, 2p|0) Given t(x, z|0p),

we define the functional

L:[t(z|00)] = /dx/dz p(z, z|60p) [(f(xwo) — t($72|90))2]

One can show it is minimized by
t(x|0y) = arg min L.[t(x|0y)] .
t(z|6o)

Again, we implement this minimization

through machine learning.
We want the score

t(z]0o) = Vg log p(x|0)




Gold mining: augmenting the training data

The augmented training data converts
supervised classification into supervised
regression with lower variance

* improvement in training efficiency

Brehmer, Louppe, Pavez, KC, PNAS (2019), arXiv:1805.12244
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Gold mining: augmenting the training data

.. o i(exlegéf|1;=eo=o.0) 1o :g,lez(;'ei,lf)al),x~p(x|e=eo) 007
The augmented training data converts P9 =6,-06 = | o e a =pio=os
~ 1.01 ~ ~1.50 A
supervised classification into supervised ze Sl s 37
% 0.6 - S AN —2.007
. . . ~ o 2 . —.25 4
regression with lower variance :
0.2 - 11 | 575 —— logr(xo|6, 61)
001 © e oo @ oeme ' ® logr(xo, 2|6, 61), tixo, 2|6)
. o . . . . T T - 0 T T . —3.00 + T T .
* improvement in training efficiency L e
2D histogram —-= SALLY
--- CARL CASCAL
----- ROLR --- RASCAL
0.175 - |
5
O
O
c 0125 New techniques 0
}E 0.100 - /yequire less data than s
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\..\ \\ ‘e, ® _10 —
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Training sample size

Brehmer, Louppe, Pavez, KC, PNAS (2019), arXiv:1805.12244



From inference to design



Reinforcement Learning & Scientific Method

Elo Rating
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AlphaGo Zero surpasses all other versions of AlphaGo
and, arguably, becomes the best Go player in the world.
It does this entirely from self-play, with no human
intervention and using no historical data.

1 1 1 1 L 1 1

10 15 20 25 30 35 40

=== AlphaGo Zero 40 blocks eees AlphaGo lLee seee AlphaGo Master



Reinforcement Learning & Scientific Method

En vironm ent

Action

<) w >,

Interp reter

(0O,
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Agent



Reinforcement Learning & Scientific Method

Scientist trying to decide what experiment to do next

oerform experiment,
gather data

ﬂvim nment

statistical analysis 4 R
ewar
Interpr'etm
% \@EJ

updated knowledge

decide which

experiment to

Action

oerform

based on analyzing data Agent



Statistical Decision theory in 1 slide

O - States of nature; X - possible observations; A - action to be taken

o(x|0) - statistical model (likelihood); n(0) - prior

0: X = A - decision rule (take some action based on observation)

[: @ x A = R - loss function, real-valued function true parameter and action

R(,8) = Epe[L(O, 8)] - risk

r(rt, ) = En(e)[ R(O,0)] - Bayes risk (expectation over 8 w.r.t. prior and possible observations)

p(r[, O ‘ X ) = En(e\x)[ L(G,S(X))] - expected loss (expectation over O w.r.t. posterior n(8|x) )



EFxpected Information Gain

Choose experiment that will maximize expected information gain in prior = posterior

Dustin Tran

P& ' Research Scientist at Google Brain
~ trandustin@google.com

W () Blog

Given data points {x, ¥}, how to select the next data point to fit the model?

Active Learning & Control

Ex. Select data points which maximize expected information gain. [Lindley et al. 1956;

Mackay 1992; Houthooft et al. 20106]
e > A

A

arg 1mmax H[H'D] apr(y‘wD) 0|y, L, D

Uncertainty determines which x is most informative and, therefore, the model’s
success.

[Hafner et al., 2019]

Slide from Dustin Tran at Hammers & Nails 2019



“"Active Sciencing”

Perform
xperiment 4
o
\ 4
: Observed
prior data
or

EIG



https://github.com/cranmer/active_sciencing

“"Active Sciencing”

v i EIG

i Info :
| "l Gain |
EIG i i



https://github.com/cranmer/active_sciencing

Synthesis

active learning / sequential design / black box optimization

Active Sciencing

simulation-based /
likelihood-free

inference engines

reusable workflows
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Kinetic energies and self-interactions of the gauge hbosons
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Kinetic energies and electroweak interactions of fermions
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angle in Standard Model of particle Physics)
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Experimental Design: A Demo

Proot-of-principle algorithm can:

e measure / infer the parameter of the theory (eg. Weinberg angle in Standaro
Model of particle Physics) from raw data using simulation-based inference

e optimize experiment (eg. beam energy) for most sensitive measurement

Al»l
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-
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Figure 2: Measured forward-backward asymmetries of
muon-pair production compared with the model indepen-

center of mass energy dent fit results.


https://github.com/cranmer/active_sciencing

Kyle Cranmer @KyleCranmer - Jun 11, 2017 %

Demo for YComb research

active learning + workflows + implicit models = #ActiveSciencing
@lukasheinrich_ @glouppe

github.com/cranmer/active...

3

(oo }— IR ——— e
e Y e ——— - o
4 . — =~ ) ()
= o= | | —~_ 7
ABC = e R
ES ] @
i
D ] e
Q 4 M 22 QO 61 Ty 1l
; Danilo J. Rezende @DeepSpiker - Jul 19, 2017 %
\ ; This is great!
O 1 () Q 3 N
"\ Kyle Cranmer @KyleCranmer - Jul 19, 2017 v
Thanks!!!
QO 1 n QO 2 W 1l
Danilo J. Rezende M
y @DeepSpiker

Replying to @KyleCranmer @lukasheinrich_ and @glouppe

You have the full loop of the scientific method in a python
notebook :)

3:12 PM - Jul 19, 2017 - Twitter for iPhone



Kyle Cranmer @KyleCranmer - Jun 11, 2017 v
Demo for YComb research

active learning + workflows + implicit models = #ActiveSciencing :
@lukasheinrich_ @glouppe Rea I Ity CheCk‘ °e
github.com/cranmer/active...

— - :
e — | Keepin mind that
= g gl e the simulator model was specitfied
-+ : ; = T | ethe space of experimental configurations was well
—In 5 5 specified
-
e Tt Still it was hard enough!
Q 4 0 22 QO 61 M 1l
| Danilo J. Rezende @DeepSpiker - Jul 19, 2017 v . . . .
& Thisis great Going to open world ot experimental configurations
O 1 (! O 3 Wy :
and potential models much harder.
‘ Kyle Cranmer @KyleCranmer - Jul 19, 2017 v
| Thanks!!!
O 1 () Q 2 a 1l
' Danilo J. Bezende Vv .
| @Deepsplker Hypothesis generation also hard.

Replying to @KyleCranmer @lukasheinrich_and @glouppe

You have the full loop of the scientific method in a python
notebook :)

3:12 PM - Jul 19, 2017 - Twitter for iPhone



The Scientific Method as an Ongoing Process

Make
Observations

What do | see in nature?
This can be from one's
own experiences, thoughts,

Develop or reading. Think of
General Theories Interesting
G | theori tb -
consistent with most or all Questions
available data and with other Why does that

current theories. pattern occur?

Refine, Alter,
Expand, or Reject
Hypotheses

Gather Data to
Test Predictions

Relevant data can come from the
literature, new observations, or
formal experiments. Thorough
testing requires replication to
verify results.

Formulate
Hypotheses

What are the general
causes of the
phenomenon | am
wondering about?

Develop
Testable
Predictions

If my hypotesis is correct,
then | expect a, b, c,...



Machine Learning for Physics and the Physics of Learning
SEPTEMBER 4 - DECEMBER 8, 2019

2% PARTICIPANT LIST B ACTIVITIES /| APPLICATION

Overview

Machine Learning (ML) is quickly providing new powerful tools for physicists and chemists to extract essential
information from large amounts of data, either from experiments or simulations. Significant steps forward in
every branch of the physical sciences could be made by embracing, developing and applying the methods of

machine learning to interrogate high-dimensional complex data in a way that has not been possible before.

As yet, most applications of machine learning to physical sciences have been limited to the “low-hanging
fruits,” as they have mostly been focused on fitting pre-existing physical models to data and on discovering
strong signals. We believe that machine learning also provides an exciting opportunity to learn the models
themselves—that is, to learn the physical principles and structures underlying the data—and that with more
realistic constraints, machine learning will also be able to generate and design complex and novel physical

structures and objects. Finally, physicists would not just like to fit their data, but rather obtain models that are

physically understandable; e.g., by maintaining relations of the predictions to the microscopic physical
quantities used as an input, and by respecting physically meaningful constraints, such as conservation laws or

symmetry relations.

The exchange between fields can go in both directions. Since its beginning, machine learning has been inspired by methods from statistical physics. Many
modern machine learning tools, such as variational inference and maximum entropy, are refinements of techniques invented by physicists. Physics,
information theory and statistics are intimately related in their goal to extract valid information from noisy data, and we want to push the cross-pollination

further in the specific context of discovering physical principles from data.
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1. ASSOCIATION
ACTIVITY:  Seeing, Observing

QUESTIONS: What if I see ...?
(How are the variables related?
How would seeing X change my belief 1n Y?)

EXAMPLES: What does a symptom tell me about a disease?
What does a survey tell us about the
election results?




if 2. INTERVENTION
| ACTIVITY: Doing, Intervening

I QUESTIONS: What if 1do ...? How?
NS OYINT = "'l —— (What would Y be if I do X?

. D__Q [N_Gt:i How can I make Y happen?)

EXAMPLES:  If I take aspirin, will my headache be cured?

What if we ban cigarettes?




3. COUNTERFACTUALS

ACTIVITY: Imagining, Retrospection, Understanding

QUESTIONS: What if I had done ...2 Why?
(Was 1t X that caused Y? What 1f X had not
occurred? What if I had acted differently?)

EXAMPLES:  Was it the aspirin that stopped my headache?
Would Kennedy be alive 1f Oswald had not
killed him? What if I had not smoked for the
last 2 years?

— S —




More formally

On Pearl’s Hierarchy and
the Foundations of Causal
Inference

Elias Bareinboim? EB@CS.COLUMBIA.EDU
Juan D. Correa’ JDCORREA @CS.COLUMBIA.EDU

" Columbia University
New York, NY 10027, USA

Duligur Ibelingi DULIGUR @STANFORD.EDU
Thomas Icard* ICARD@STANFORD.EDU
* Stanford University

Stanford, CA 94305, USA

SCM
(Unobserved Nature)
Unobserved
Causal
Mechanisms L3 Counterfactual

L» Interventional

L1 Associational

(a) (b)

Observed
Phenomena

Figure 1.1: (a) Collection of causal mechanisms (or SCM) generating certain observed phe-
nomena (qualitatively different probability distributions). (b) PCH’s containment structure.

causal model, or SCM). We then turn to the logical lens. Our first result, the Causal Hierarchy
Theorem (CHT), demonstrates that the three layers of the hierarchy almostalways separate

in a measure-theoretic sense. Rougl s ekl, ‘the CHT .» that data at one 'a'er virtu-

ally always underdetermines information at higher layers. Since 1n most practical settings

vV~

28V

SANN




A toy example Ferenc Huszar

- - - inFERENCe
Z = randn()

y=z+ 1+ sqgrt(3)*randn()

X=2Z

X = randn() y =1+ 2*randn()

y=x+ 1+ sqrt(3)*randn() X = (y-1)/4 + sqrt(3)*randn()/2

(O—( (O

0 " pearsonr = 0.47; g: $e.28 pearsonr = Og4; p = 9.839
® L ™ 6 ® o
4
4 4
2
2 2
> > >
0
0 0
-2 _2 _2
- o= 051 p = 2.5¢-34 -4 4
pearsonr = .5,p- Se- ®
-2 0 2 -2 0 2 -2 0 2
X X X

https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/



https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/

A toy example

(O—(

P(y|do(X)) = p(y|x)

randn()

X< X X

3
X + 1 + sqrt(3)*randn()
3

y

pearsonr=nan,p=1

o & A M o N b O @

2.50 2.75 3.00 3.25
X

3.50

OO

P(y|do(X)) = p(y)

+ 2*randn()

-1)/4 + sqrt(3)*randn()/2

X X X <
nonomon
WS W=

y

pearsonr=nan.,p=1

2.50 2.75 3.00 3.25 3.50
X

https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/
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Ferenc Huszar

n

P(y|do(X)) = p(y)

randn()

+ 1 + sqgrt(3)*randn()
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 across different distributions:
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for transfer learning, ag
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changes across different distribution

_smaller sample complexity 1O re€

from a distribution change

cover

 E.g. for transfer learning, agent learning,

domain adaptation, etc.

Max Welling Isn’t this what Bernhard
Schoelkopf has been saying for a while?

Like

Reply - 6w

Yann LeCun ...and Leon Bottou ?

Like - Reply - 6w

Leon Bottou Yoshua's paper says:
If you observe a distribution change
that comes from a causal effect,
then you'll adapt faster if your
generative model matches the
causal model.

Another way of seeing it is : the
right causal graph suggests a
particular factorization of the joint
distribution (a directed bayesian
network). A causal intervention
means that you only change one of
these factors (or a few factors)
while leaving the other ones
unchanged. Therefore if your
generative model is the right causal
model, meaning that it factorizes
the joint in the same way, it will be
easy to adapt it to the change
because only a few parameters
need changing (those associated
with the factors that actually
changed).

Max Welling Dan Roy | am, and |
think most of us, are keenly aware
that Josh has been the big
proponent of this view. And | think
most people agree with him on this
view. Integrating this view with
deep learning for more narrowly
defined tasks seems to me an
interesting intellectual pursuit
though. | think that's what'’s
happening here but | was not at the
talk ==
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A ‘ 9 Or | 1 h M | C A ‘ | 9 nNMmMment http://www.ipam.ucla.edu/abstract/?tid=16/10&pcode=DL C2021

ldea

® Algorithms are structured arrangements of subroutines

®* Neural networks are structured arrangements of learnable “modules”

formalize inductive bias?

Algorithmic Alignment: Network can mimic algorithm
via few, easy-to-learn “modules”

Hypothesis: Alignment facilitates learning

Il 9:48 ) ¥ 4058

Stefanie Jegelka’s talk at IPAM workshop on Deep Learning and Combinatorial Optimization
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L earning Physics with Deep
Neural Networks

Stephane Mallat, Ph.D.

Ecole Normale Supérieure de Paris (ENS)

Can we learn physical properties from data? Machine learning offers a solution. It has
many similarities with physics, requiring the approximation of functionals which
depend on large numbers of variables, such as millions of pixels in Images, letters in
text, or particles in a physical system. Machine learning algorithms have considerably
improved In the last 10 years through the processing of massive amounts of data. In
particular, deep neural networks have spectacular applications, such as image
classification and medical, industrial and physical data analysis.

In this lecture, Stéphane Mallat will show how machine learning can be applied to
statistical physics, turbulent fluids and quantum chemistry. Beyond applications, he
will highlight common mathematical approaches in physics and machine learning to
overcome the issue of dimensionality. Two central pillars of such approaches are
finding symmetries and separating phenomena at different scales. He will show that
these pillars also govern the architecture and properties of deep convolutional neural

networks.




Lattice Field Theory
Very expensive simulations with high dimensional data: eg. xe R10°

Use normalizing flow to approximate target distribution ot contigurations that is
implied by the action S(x) via the Boltzmann Equation p(x) = e>W/Z

QCD Lagrangian
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2 0 Building symmetries into generative flow models

Space-time & Local Gauge Symmetry

Abstract: | will discuss recent work to incorporate symmetries, in particular gauge symmetries (local
symmetry transformations that form Lie groups), into generative flow models. This work is
motivated by the applications of generative models for physics simulation, in particular for lattice
field theory.

The action is invariant to gauge transtormations, so the distribution is constant in
those directions

Many more pure gauge degrees of freedom than physical ones

We would like to entorce this symmetry in the network, and not have to learn it.
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2 O Building symmetries into generative flow models

May 2020  Phiala Shanahan, MIT, 12:00 EDT
Abstract: | will discuss recent work to incorporate symmetries, in particular gauge symmetries (local
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motivated by the applications of generative models for physics simulation, in particular for lattice

field theory.
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Permutation symmetry

Set2Graph: Learning Graphs
» Physics n ML from Sets

) )
, a virtual hub at the interface of theoretical physics and deep learning.

16 Two talks from string_data 2020
Dec2020  Haggai Maron (NVIDIA Research) and Sergei Gukov (CalTech), 12:00EDT Ellam Gross? Haggal Maron3 Yaron Llpman1

Haggai Maron

Title: Leveraging Permutation Group Symmetries for the design of Equivariant Neural Networks

Abstract: Learning of irregular data, such as sets and graphs, is a prominent research direction that
as received considerable attention in the last few years. The main challenge that arises is whic
h ived iderabl ion in the last f Th in chall h i is which 3].1235 TZ:’Xﬂ lj?j

architectures should be used for such data types. | will present a general framework for designing WEIZMANN INSTITUTE OF SCIENCE
network architectures for irregular data types that adhere to permutation group symmetries. In the 1 2
first part of the talk, we will see that these architectures can be implemented using a simple
parameter-sharing scheme. We will then demonstrate the applicability of the framework by devising
neural architectures for two widely used irregular data types: (i) Graphs and hyper-graphs and (ii)

Sets of structured elements. S et —> graph
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Hybrid “physics-aware” approaches to Al / ML

* inject knowledge of data generating
orocess into inductive bias of ML models

e use “black box” style ML components to model the
most uncertain aspects of problem where traditional
approaches make overly restrictive assumptions

* align architectural components of ML models with
causal mechanism




Insight of data generating process informs
inductive bias on architecture

(a) Molecule (b) Mass-Spring System

O ANEV_Erava

(C) n-body System (d) Rigid Body System

(e) Sentence and Parse Tree (f) Image and Fully-Connected Scene Graph
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Dynamical systems

Physical systems as graphs
Balls

el
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Nodes: bodies Nodes: balls Nodes: masses
Edges: gravitational forces Edges: rigid collisions between Edges: springs and rigid
balls, and walls collisions

Peter Battaglia

Battaglia, P., Pascanu, R., Lai, M., Rezende, D. J., et al. NeurlPS 2016
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Slides borrowed with permission from Peter Battaglia based on Battaglia et al., 2016, NeurlPS
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Hamiltonian Graph Networks with ODE Integrators

Hamiltonian graph Networks
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Hamiltonian graph Networks

We incorporated two physically-informed

inductive biases
e ODE integrators

e Hamiltonian mechanics
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We found they could improve pertormance, energy, and zero-shot time-step generalization.

e HOGN generalizes better across integrators and time steps

Ground truth True Ham. DeltaGN HOGN
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Bottlenecks

Reminder, in the HOGN, the global

hidden state goes through a severe
bottleneck... the Hamiltonian is a scalar! Algorithmic bottleneck

e Second (more fundamental) issue: data efficiency
C O G \ / HO G \ o Real-world data is often incredibly rich
o  We still have to compress it down to scalar values
~ T T TN %
- e The algorithmic solver: 1

/ Agaln S|m|‘ar|t|eS Wlth o Commits to using this scalar

o Assumes itis perfect!
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At a ‘ g O r I t h m I C re a S O n I n g e |If there are insufficient training data to properly estimate the scalars, we hit same issues!

o  Algorithm will give a perfect solution, but in a suboptimal environment
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Discovering Symbolic Models from Deep

Learning with Inductive Biases
(arxiv:2006.11287)
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Miles Cranmer, Dept. of Astrophysics, Princeton University

@MilesCranmer

with: Alvaro Sanchez-Gonzalez (DeepMind), Peter Battaglia (DeepMind), Rui Xu (Princeton),
Kyle Cranmer (NYU), David Spergel (Flatiron/Princeton), Shirley Ho (Flatiron)




with:

Physics n ML

P 2
? f ’ a virtual hub at the interface of theoretical physics and deep learning.

2 9 Discovering Symbolic Models in Physical Systems using
2020 ~Deep Learning

Shirley Ho, Flatiron Institute, 12:00 EDT

Abstract: We develop a general approach to distill symbolic representations of a learned deep model
by introducing strong inductive biases. We focus on Graph Neural Networks (GNNs). The technique
works as follows: we first encourage sparse latent representations when we train a GNN in a
supervised setting, then we apply symbolic regression to components of the learned model to
extract explicit physical relations. We find the correct known equations, including force laws and
Hamiltonians, can be extracted from the neural network. We then apply our method to a non-trivial
cosmology example—a detailed dark matter simulation—and discover a new analytic formula that
can predict the concentration of dark matter from the mass distribution of nearby cosmic
structures. The symbolic expressions extracted from the GNN using our technique also generalized
to out-of-distribution-data better than the GNN itself. Our approach offers alternative directions for

interpreting neural networks and discovering novel physical principles from the representations they
learn.
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Symbolic Regression
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What could this mean for GNNs?

Shortest Path dk|[u] = min d[k — 1][v] + w(v,u)
veEN (u)
(target):
GNN (sum): hi” —Le;( )MLP("]( v RS gy ) MLP learns non-linear function
u

Battaglia et al 2018, Velickovic et al 2020: extrapolation with

h(k) _ (R MLP(k)(h(A 1) h‘ D) g ) MLP learns linear function
LGN(u) ] v

max/min pooling
I sum pooling
Hypothesus/,Lmear algorithmic alignment helps extrapolation 438

(formal proof for special cases) L .
— = C
Encode nonlinearities extrapolate  interpolate

in architecture or features. shortest path

Stefanie Jegelka’s talk at IPAM workshop on Deep Learning and Combinatorial Optimization


http://www.ipam.ucla.edu/abstract/?tid=16710&pcode=DLC2021
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volution of the tree is latent
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QCD-inspired Recursive Neural Networks A2 07

The Machine Learning Landscape of Top Taggers

G. Kasieczka (ed)!, T. Plehn (ed)?, A. Butter?, K. Cranmer?®, D. Debnath?,
M. Fairbairn®, W. Fedorko®, C. Gay®, L. Gouskos’, P. T. Komiske®, S. Leiss!, A. Lister®,
S. Macaluso®?, E. M. Metodiev®, L. Moore?, B. Nachman,'%!! K. Nordstrom'?:13,
J. Pearkes®, H. Qu”, Y. Rath!4, M. Rieger'4, D. Shih*, J. M. Thompson?, and S. Varma®

y=0, y_pred=0.1529

e (Generative process approximately stationary

AUC | Acc 1/ep (es = 0.3) #Param

M |< P d . -t -[: d single mean median

dI'kKoOV rrocess proaucing tree O eCays
CNN [16] 0.981 | 0.930 | 914414  995+15 966418 610k
ResNeXt [30] 0.984 | 0.936 | 1122447 1246428 1286431 | 1.46M
e algorithms exist to estimate the latent tree TopoDNN [15] 0.072 [ 0.916 |  295+5 378+ 5 391+ 8| 59k
Multi-body N-subjettiness 6 [24] | 0.979 | 0.922 79218  802=£12 783+13 57k
Multi-body N-subjettiness 8 [24] | 0.981 | 0.929 | 86715  926+20  886+18 58k
; L : TreeNiN [43] 0.982 | 0.933 | 1025411 1209423 1167424 34k e
0

TreeRNN performs well on binary classification e 0982 ) 0.953 | 102511 1209428 L1672l | Sk
" |< h r ' d d ParticleNet [47] 0.985 | 0.938 | 1208446 1383445 1374441 498k
dsSK, Nas many rewer parameters, and necas LBN [19] 0.981 | 0.931 | 836417 852467 971420 705Kk
- LoLa [22] 0.980 | 0.929 | 722417 768411 751411 127k
much \ess data to train! Energy Flow Polynomials [21] 0.980 | 0.932 | 384 1k
Energy Flow Network [23] 0.979 | 0.927 | 633431 734413 729411 82k
Particle Flow Network [23] 0.982 | 0.932 | 891418 1005421 1005429 82k
Louppe, Cho, Becot, KC [arXiv:1702.00748] GoaT 0.985 | 0.939 | 1368+140 15494208 35k

) 0.5330




Andreassen, Feige, Frye, Schwartz arXiv:1804.09720

A ‘ i g n m e n t -FO r 9 e n e r a t i V e m O d e ‘ See also Glnkgo by Sebastian Macaluso and Duccio Pappadopulo, and KC

https://github.com/SebastianMacaluso/ToyJetsShower

JUNIPR is an autoregressive generative model

[ ] ([ ] (] [ ] ~—
: I I E t S W I t EI t I EI C t El e I e I O O o ol pases 0.0471 104894 06035
00416 0,329 0427 0951 0.3433 0.3580 0.1455 04334 04763 00651 \0.3848 04520

— |
n 0.0319 03032 0.33® 0.0413 0.2703 0.2964 0.1153 0.934 0.93% 0.0525 0.2128 0.3033 0.0659 /0.3850 \0.3912 0.0367 0.2501 03340 0.0510 0.3357 . 0.3490 0.0551 0.0213 0.1484 01719 00163 0.1305 0.108° ).
P P k ( ) k ( ) k ( ) k ( ) 0.0281 0.2433 0.2785 0.0428 0.0366 0.1932° 0.223% 0.0616 0.0950 0295 0.2734 0.0285 0.1612 0.19%9 0,023 0.0740 0.0376 0.3174 0.4 0.0582 0.0306 0.0173 00417 0.0496 0.0210 00825 0.1010 0.0306 0.026° ). .0 ). )
Jet plapn (4 | VAR t_|_] 1 9 V¢
00170 0.2169 0.2107 00798 0.2082  0.2M5 00325 0195 0143 00784 0.2664 0.2373 00768 0.1971  0.1971 0.0151 00229 01077 0.1269 0.0504 0.0390 ). 1 .
L t=1

x P, (end|k\™, ... k™).

y=0, y_pred=0.1529

Autoregressive structure matches causal

structure in traditional physics simulators
0.08

Pythia ete™— qq
C/A clustering

0.06 1 JUNIPR cont. prob.

Pythia freq.

0.04

probability

— alignment!
0.02 -

OOO | L L I L LN LN I I B
0.002 0.01 0.1 0.9
z (all t's)

| atent variables are interpretable
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What could this mean for GNNs?

Shortest Path d(k|[u] = IIJI\}II dk — 1][v] + w(v, u)

(target): uENi(u)

GNN (sum): h) —L;( )m(k](hik D RGEY w ) MLP learns non-linear function
u

Battaglia et al 2018, Velickovic et al 2020: extrapolation with

: » e - MLP learns linear function
h’gzk) = Eg}?’u) MLP(kﬂ(hSLA l)f h'grl\ l)- w -v.u))

max/min pooling
I sum pooling
Hypothesis: Linear algorithmic alignment helps extrapolation 438

(formal proof for special cases) L .
w— = " .
Encode nonlinearities extrapolate  interpolate

in architecture or features. shortest path

Stefanie Jegelka’s talk at IPAM workshop on Deep Learning and Combinatorial Optimization


http://www.ipam.ucla.edu/abstract/?tid=16710&pcode=DLC2021

Physical systems are a good testbed for Al research



Interplay of key ingredients of Deep Learning

Hard to analyze the effect of data structure for real-world data sources.

Toy models are useftul!

SIMPLER QUESTION: WHEN CAN A NEURAL
NETWORK LEARN A TEACHER-NEURAL NETWORK?

Teacher-network Student-network

e Generates data X, n samples of p
dimensional data, e.g. random input
vectors.

e Observes X, y, the architecture of the
network.

e How does the best achievable
generalisation error depend on the
number of samples n?

e Generates weights w*, e.g. iid random.

o Generates labels y.

[ —

.

ke Ziobarons algorithm

Talk: https://ml4physicalsciences.github.io

Position piece: https://rdcu.be/bdp1m
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Interplay of key ingredients ot Deep Learning

Hard to analyze the effect of data structure for real-world data sources.
Toy models are useftul!

+>>» Physics n ML

'? ’ a virtual hub at the interface of theoretical physics and deep learning.

0 9 Insights on gradient-based algorithms in high-
se2020 dlMmensional learning

Lenka Zdeborova, EPFL, 12:00 EDT

Abstract: Gradient descent algorithms and their noisy variants, such as the Langevin dynamics or
multi-pass SGD, are at the center of attention in machine learning. Yet their behaviour remains
perplexing, in particular in the high-dimensional non-convex setting. In this talk, | will present several
high-dimensional and (mostly) non-convex statistical learning problems in which the performance of
gradient-based algorithms can be analysed down to a constant. The common point of these settings
is that the data come from a probabilistic generative model leading to problems for which, in the
high-dimensional limit, statistical physics provides exact closed solutions for the performance of the
gradient-based algorithms. The covered settings include the spiked mixed matrix-tensor model, the
perceptron or phase retrieval.

Slides and video of the talk are both available.

ke Ziobarons algorithm

Talk: https://mldphysicalsciences.github.io
Position piece: https://rdcu.be/bdp1m
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Generalization

Teacher =@ Causal, Generative Model (Simulator)
Richer set of problems can be investigated.

X
o

Q
¥§ %
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alg()ritm

KC adapting from Lenka Zdeborova



A profound shift

Scientific simulators are based on well-motivated mechanistic models

e However, the aggregate eftect of many interactions between their low-level
components leads to intractable inverse problems

The developments in machine learning have the potential to eftectively bridge the
microscopic - macroscopic divide & aid in these inverse problems

* They can provide effective models for macroscopic (emergent) phenomena that
are tied back to the low-level microscopic (reductionist) model

Hybrid approaches align architectural components with causal mechanism

e A path to Al that can learn causal mechanism, generate hypotheses, and design
future experiments

99



Conclusion

Physical models are highly-structured causal models:
e |nsight of data generating process informs inductive bias on architecture

 There is growing empirical evidence that this inductive bias is helpful in terms of sample
complexity and generalization

* |dentification of semantics of physical system with network components is easy to take for
granted, but has many important consequences. (vis-a-vis “alignment”)

Simulators for physical systems provide families ot problems that can be scaled to a complexity
beyond the reach of current ML systems.

* They provide controlled experiments

e Some of problems have known solutions or strong baselines that aid theoretical and
experimental analysis

e |deal to probe interplay between architecture, data, & algorithms.
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An IPAM workshop

Highly recommended: Further insight

http://www.ipam.ucla.edu/programs/workshops/deep-learning-and-combinatorial-optimization/

If you would like to know more details about constructing good processor networks:

DeepMind DeepMind

Deep Learning and Combinatorial Optimization

FEBRUARY 22 - 25, 2021 3 .
S DL AT DI L Algorithmic Inductive Biases

for Algorithmic Reasoning

Petar Velickovi¢ Petar Velickovi¢

DL4AG@WWW2020 DLG-KDD"20
21 April 2020 24 August 2020

28 SPEAKERLIST [~] scHEDULE

https://drive.google.com/file/d/1 EQ9Yu7VEkvr
HaVH1 WbTS5ABvxrSNY-s/view?usp=sharing ‘ﬁi

https://www.youtube.com/watch?v=IPQ6CPoluock

Overview — —

Virtual Workshop: In response to COVID-19, all participants will attend this workshop virtually via Zoom.
Workshop registrants will receive the Zoom link a few days prior to the workshop, along with instructions Want to know more?

on how to participate. The video of the recorded sessions will be made available on IPAM website.

Combinatorial optimization and reasoning Our 43-page survey on GNNs for CO!
with graph neural networks

Quentin Cappart!, Didier Chételat?, Elias Khalil>, Andrea Lodi?, https://arxiv.org/abs/2102.09544

Christopher Morris?, and Petar Veli¢kovi¢™

Workshop Overview: In recent years, deep learning has significantly improved the fields of computer

vision, natural language processing and speech recognition. Beyond these traditional fields, deep learning

has been expended to quantum chemistry, physics, neuroscience, and more recently to combinatorial

optimization (CO). Well-known CO problems are Travelling Salesman Problem, assignment problems,

IDepartment of Computer Engineering and Software Engineering, Polytechnique Montréal

: | ; B : h d heduli CO is basicall d d in fi d 2CERC in Data Science for Real-Time Decision-Making, Polytechnique Montréal Section 3.3. details algorlthmIC reasoning,
routing, planning, Bayesian search, and scheduling. IS DasIcally usedad every aay In 1inance and revenue 3Department ofMecha.nical&hl‘g;lstril;a/l['Er(;gineermg, Ulitversity of Toronts with Comprehensive references.
eepMin

management, transportation, manufacturing, supply chain, public policy, hardware design, computing and

information technology.
9 Combinatorial optimization is a well-established area in operations research and
computer science. Until recently, its methods have focused on solving problem
instances in isolation, ignoring the fact that they often stem from related data
distributions in practice. However, recent years have seen a surge of interest in
using machine learning, especially graph neural networks (GNNs), as a key building

Most combinatorial problems are difficult to solve, often leading to heuristic solutions which require years

of research work and significant specialized knowledge. For example, the famous TSP problem has been block for combinatorial tasks, either as solvers or as helper functions. GNNs are
an inductive bias that effectively encodes combinatorial and relational input due
studied for more than 80 years, and the best solver leverages 30 years of theoretical developments, data to their permutation-invariance and sparsity awareness. This paper presents a
conceptual review of recent key advancements in this emerging field, aiming at
structures and heuristics from computer science. In the last few years, deep learning has developed some preliminary but promising approaches to deal with both the optimization and machine learning researcher. 0

classical CO problems such as TSP, MaxCut, Minimum Vertex Cover, Knapsack, Quadratic Assignment Problem and Vehicle Routing Problems. DL is particularly

attractive to address CO problems given its high flexibility, approximate nature, and self-learning paradigm. In other words, DL has the potential to learn universal
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