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Tensions in cosmology

With the avalanche of data over the past 10-20 years we are in the era of precision
cosmology, where parameters are measured at the percent level.
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Fig. 13. Increase in the “statistical weight” (i.e., 1 /0%, where o
for each parameter comes from marginalising over the rest of the
set) for a selection of ACDM parameters as a function of time.
The bars represent the same divisions as in Figs. 11 and 12: pre-
WMAP (green); WMAP1, WMAP3, WMAPS5, WMAP7, and
WMAP9 (blue shades); and Planck13, Planck15, and Planck18
(red shades).
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Tensions in cosmology

ACDM parameters are not predicted but rather inferred from observations*.

We can obtain independent estimates of the parameters from different observables in our single universe to
check for consistency between our universe and the ACDM model.
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Tensions in cosmology

While individual datasets do not favor extensions to the base model, we see significant
tensions between some of the ACDM (derived) parameters from different observables.

flat ACDM

HSC Y1
LatPES Y1 (Troxel et al. 2018)
univeKiDS-450 (Hildebrandt et al. 2017)
——— KiDS-450 (Kohlinger et al. 2017)
CFHTLenS re-—analysis (Joudaki et al. 2017)
Planck TT+LowP (Planck Collaboration 2015)

universe

Late

universe
Planck (Planck Collaboration 2018)

DES+BAO+BBN (Abbott et al. 2018)
SHOES (Riess et al. 2019)

HOLICOW 2019 (this work)

Late Universe (SHOES + HOLICOW)

—e—
Early
universe

Hikage+ (2019)

Wong+ (2019)



Tensions in cosmology

Are cosmological parameters as accurate as they are precise?

Without answering this question we can’t know if tensions point to new physics.

Statistical
Inference
Quality, voIl_Jme, Accuracy, Accuracy, Support, dependance
systematics completeness completeness
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The Likelihood

The likelihood measures the extent to which a sample provides support for particular
values in a statistical model.

Much of statistical inference is predicated on the likelihood:

- Maximum likelihood estimates
- likelihood ratio

- posteriors

- Bayes factor



Gaussian likelihoods

Gaussian likelihoods are very
widespread: well understood, only
need a covariance matrix, CLT...

CMB power spectra (Planck 2018)

maps. Specifically, the low-¢ temperature (TT) likelihood is con-
structed by approximating the marginal distribution of the tem-
perature angular power spectrum derived from Gibbs sampling-
based component separation. The low-¢ polarization (EE) like-
lihood is built by comparing a cross-frequency power spectrum

of two foreground-corrected maps to a set of simulations.The
temperature and polarization high-¢ likelihoods (TT, TE, and
EE) uses multiple cross-frequency spectra estimates, assum-
ing smooth foreground and nuisance spectra templates and a
Gaussian likelihood approximation.

Shear 2pt function (HSC)

—2InL(p) =Y _(di —mi(p)) Covy;' (d; —m;(p))

¥

Galaxy power spectrum (SDSS-III BOSS)

Dyrfd/r, = 1493 + 28,1913 + 35, and 2133 & 36 Mpc. As-
suming Gaussian likelihood, we provide a covariance matrix
which contains the parameter constraints as well as their

correlations (see appendix B]).

Galaxy clustering + weak lensing (KiDS-1000)

6.2. Gaussian likelihood assumption

Along with the vast majority of large-scale structure cosmolog-

ical analyses, we adopt a multivariate Gaussian likelihood. This
is expected to be a generally excellent approximation if the sum-
mary statistics entering the likelihood have been averaged over
many modes in the underlying fields. Exact likelihood expres-




Gaussian likelihoods

Gaussian likelihoods are very
widespread: well understood, only

need a covariance matrix, CLT...

However,

- CLT isn’t always applicable (e.g. power spectra at small wavenumbers)

- For estimated covariance, marginalize over the true covariance (Gaussian —
t-distribution)

- Systematic effects can introduce non-Gaussian correlations

- Physics giving rise to an observable: a nonlinear function of Gaussian RVs is not
Gaussian distributed (CMB vs. galaxy distributions)



Gaussian likelihoods

Gaussian likelihoods are very
widespread: well understood, only

need a covariance matrix, CLT...

Using a wrong likelihood introduces a source of systematic uncertainty:

can bias parameters inferred from some data — are tensions created/amplified by the use of
wrong likelihoods?



Gaussian likelihoods

There isn’t always a clear alternative/better likelihood:

ACT Thermal SZ one-point PDF (Hill+, 2015)

L parameters to be broken. In this analysis, the data are not quite at the level needed to strongly break the cosmology—
GaUSSIaDIZIHg ICM degeneracy. The problem is made more challenging by the highly correlated, non-Gaussian nature of the PDF
data likelihood function (see Section |V|below), which we simplify by combining many of the bins in the tail of the tSZ
PDF. With a more sophisticated approach to the likelihood function and wider, deeper maps, future measurements

of the tSZ PDF should allow for a stronger breaking of the cosmology—ICM degeneracy.

CFHTLensS shear correlation (Sellentin+, 2018)

As demonstrated in the previous section, the correlations
between various data points of CFHTLenS give rise to non-
Gaussianities at a 30% level according to our definition.
Here, we present a preliminary study of how these non-
Removing NG Gaussianities might impact parameter constraints, by ex-

cluding the most contaminated data points from the likeli-
hood. However, as essentially the entire CFHTLenS dataset
is contaminated (see Fig. 3), such exclusions are clearly
a suboptimal strategy. We nonetheless report our findings
as intermediate results and postpone an update to a non-
Gaussian likelihood to future work.

bins




An alternative: data-driven likelihoods (DDLs)

Data-driven likelihoods are learned from data:

- We can think of (mock) data as independent draws from the underlying true
likelihood function.
- We can estimate the data’s PDF with sufficient samples from it.

The hope is that DDLs can accurately capture non-Gaussianities in the data.



An alternative: data-driven likelihoods (DDLs)

Gaussian Mixture Models (GMM) Independent Component Analysis (ICA)
x = As

K
Povm (x) = Z PN (x| s, 34)
g=i

Rotate principal components to maximize

weights  unknown statistical independence.

parameters

| o S = x1ca = Wx = {X1,1cA, --s XN,ICA }
Use expectation maximization to
find parameters, BIC to determine K.




An alternative: data-driven likelihoods (DDLs)

Hahn+ (2018): Large-scale structure with non-Gaussian likelihoods (<0.5c shifts)

Group multiplicity function (with GMM) Galaxy power spectrum (with ICA)

== Beutler et al. (2017) Hahn et al. (2018)
rlca

11.5
lOg M, min

20,000 mocks 2,048 mocks




An alternative: data-driven likelihoods (DDLs)

Flow-based Likelihoods (FBLs, Diaz Rivero & Dvorkin 2020)
— [ will introduce flow-based generative models

— Their minimization objective is what we will call a flow-based likelihood

See also literature on simulation-based inference and likelihood-free inference (e.g.
DELFI), which have used flows for density estimation as well!



Flow-based generative models

Generative models aim to learn the probability distribution that gave rise to data x,
such that new samples can be drawn.

In flow-based models, a simple distribution is repeatedly transformed to match p(x).

Generative direction
(sampling)

X—f() =

= gp(2
— (2
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z = fo(x) = g5 ' (%)
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Generative models aim to learn the probability distribution that gave rise to data x,
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Flow-based generative models

Generative models aim to learn the probability distribution that gave rise to data x,
such that new samples can be drawn.

In flow-based models, a simple distribution is repeatedly transformed to match p(x).
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Flow-based generative models

Generative models aim to learn the probability distribution that gave rise to data x,
such that new samples can be drawn.

In flow-based models, a simple distribution is repeatedly transformed to match p(x).
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Flow-based generative models

Generative models aim to learn the probability distribution that gave rise to data x,
such that new samples can be drawn.

In flow-based models, a simple distribution is repeatedly transformed to match p(x).

fl h1 f2 fK_l hK_1 (—fg—) hK —t




Flow-based generative models

Generative models aim to learn the probability distribution that gave rise to data x,
such that new samples can be drawn.

In flow-based models, a simple distribution is repeatedly transformed to match p(x).




Flow-based generative models

The goal is to train a model to learn these transformations.

- Transformations can involve (invertible) neural networks to make them very
expressive.
- The loss is the negative log-likelihood over the training set.

If training is successful, the learned likelihood == the true data likelihood == a DDL.



Flow-based generative models

BUT, transformations must

- be easily invertible,
- have an easy-to-compute Jacobian determinant (scales as N 3,

which limits their expressivity.
Different tricks in the literature:

- Restrict the form of the transformation to exploit identities
- Make Jacobian triangular by making transformations auto-regressive or splitting up
dimensions and applying affine transformations

Ideally also want quick density estimation and sampling.



Flow-based generative models

Fast likelihood-free cosmology with neural density
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FFJORD (Grathwohl+ 2018)

Transformation from prior to data is seen as

p(z(t1))

evolution in time.

ogp(a(tr) = Togp(a(t)) — [T (ot )
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FFJORD (Grathwohl+ 2018)

Transformation from prior to data is seen as
evolution in time.

p(z(t1))

neural
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FFJORD (Grathwohl+ 2018)

Transformation from prior to data is seen as

evolution in time.

neural
network Sz

trace instead of

logdet
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data prior (IC)
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Samples vs likelihood quality

Non-singular covariance

MVN samples
FBL samples

o MVN: f7rue Zuw

MVN: Urrue Zea MVN: fesL Z1rue

Diaz Rivero & Dvorkin
-60 -55 -50 -45 -60 -55 =50
(2020) logLmvn 10gLmvn

MVN: fuvn ﬁMVN

MVN: fegL ZraL

=55 =50
logLmvn

-45

-40




Samples vs likelihood quality

Singular covariance

-1 $—1
zTrue 1e12 zMVN le12

MVN samples
---- FBL samples

Diaz Rivero & Dvorkin
(2020) log i

2True — ZMVN

-1 s—1
zTrue - zMVN

MVN: fIest Z1rue

25
logLmvn

25 30
logLmvn




Quantifying non-Gaussianity in a dataset

We propose identifying non-Gaussianities (NG) in three ways:

1. t-statistic of skewness and excess kurtosis for every bin in the data

A

g o /B_ﬂnull 0 for a

SE ( ,3) Gaussian

Diaz Rivero & Dvorkin
(2020)



Quantifying non-Gaussianity in a dataset

We propose identifying non-Gaussianities (NG) in three ways:

2. 'Transcovariance matrix (Sellentin+ 2018), which considers the Gaussianity of all
pairs of data points

Should be equal for
whitened Gaussian data

Total non-Gaussian
contamination for each bin

Diaz Rivero & Dvorkin
(2020)



Quantifying non-Gaussianity in a dataset

We propose identifying non-Gaussianities (NG) in three ways:

3. KL divergence of (the data w.r.t. a MVN) vs (MVN with itself) (Hahn+ 2018)

Dy (pllg) = / ) o )

q(x)

A m
Dn,m(pllg) = Z log + log ——

Unbiased kNN estimator (Wang+ 2009)
Diaz Rivero & Dvorkin

(2020)



Quantifying non-Gaussianity in a dataset

Going forward we will:

1. Apply these three tests to a mock dataset to look at the different ways in which
NG can manifest themselves.

2. Generate samples from the three DDLs to assess whether each likelihood has
successfully captured the NGs.

Diaz Rivero & Dvorkin
(2020)



Weak gravitational lensing

Gravitational Lensing

Weak lens Strong lens

b J

‘-

Figure credit: HETDEX

Statistical correlations in the shapes of millions of galaxies




Simulated weak lensing data

Simulated 75,000 mock convergence maps using LensTools (Petri 2016)

ensing maps (x, )
2D matter
plane
Petri (2016) 3D matter
distribution deg rees

(N-body sim)



Simulated weak lensing data

Simulated 75,000 mock convergence maps using LensTools (Petri 2016) and calculated

the weak lensing convergence power spectrum:

0.00035

= 0.00030
N

~~ 0.00025
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9:‘ 0.00020
_—_

+ 0.00015
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< 0.00010

0.00005

1000

2000
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3000
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Convergence
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Rivero & Dvorkin
(2020)



NG in the weak lensing convergence power spectrum

Test 1: t-stat of
skewness and
kurtosis

Test 2:
transcovariance
matrix

Test 3: KL
divergence

|t-statistic|

Skewness

2000 3000 4000 1000
L

Gaussian samples

== Ref. MVN
m— D(X™ok||Yper )

KL div. if data
were Gaussian

/ Observed
KL div.

\

02 04 06 08 10
KL divergence

Kurtosis

Gauss. 95th perc.
[ Gauss. 68th perc.
Data

2000 3000
!

% Original
» Gauss. samples

Diaz Rivero & Dvorkin
(2020)



NG in the weak lensing convergence power spectrum

Test 1: t-stat of
skewness and
kurtosis

2000 3000 1000 2000 3000
L L

Test 2:
transcovariance
matrix

Test 3: KL
divergence

Diaz Rivero & Dvorkin
(2020)



NG in the weak lensing convergence power spectrum

Test 1: t-stat of
skewness and
kurtosis

Gaussian samples

Test 2:
transcovariance
matrix

Test 3: KL
divergence

Diaz Rivero & Dvorkin
(2020)



NG in the weak lensing convergence power spectrum

Test 1: t-stat of
skewness and
kurtosis

Test 2:
transcovariance
matrix

Test 3: KL
divergence

Diaz Rivero & Dvorkin
(2020)




FBL for the convergence power spectrum

Training the model: whitened data, Adam opt., ELU activation function, 80/10/10 split

Epoch 1 Epoch 2 Epoch 3 Epoch 75
100 -80 -60 -40  -100 -80 -60  -40 100 -80 -60  -40

- | Expected LL if
. Learned
l0gL myn logLmyn logLmyn logLmyn

data is Gaussian -
' LL
100 -80 -60 -40 ;

25 50 75 100 0 SO 100 150 200 O 100 200 300 0 2000 4000 6000 8000
Iteration Iteration Iteration Iteration

Diaz Rivero & Dvorkin
(2020)




FBL for the convergence power spectrum
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Test 2:

FBL for the convergence power spectrum

matrix
Skewness Kurtosis
Mock Data m Ref. MVN

Test 1: t—Stat Of / - D(XmOCkllyhe\;N)
skewness and 29
kurtosis

DX™K||YES,)

Test 3: KL

10 20 10 20 0 0.00 025 050 075 1.00 divergence
Bin Bin i KL divergence

Skewness Kurtosis

10 20 ! 10 20 ! ! ( o0 000 025 050 075 1.00
Bin Bin KL divergence

Skewness Kurtosis

. az Rivero & Dvorkin
KL divergence (2020)
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Test 2:

S p e Gt ru m transcovariance

matrix

FBL for the convergence power

Skewness Kurtosis e”t
Mock Data %2 ; B Ref. MVN
Test 1: t-stat of P . =wman ]
skewness and : - D(X™oK|| Y
kurtosis |
i | Test 3: KL
% 000 025 0,5‘75 1.00 divergence

KL divergence

Diaz Rivero & Dvorkin
(2020)



Test 2:

FBL for the convergence power spectrum

matrix
Test 1: t-stat of
skewness and
kurtosis
Test 3: KL
divergence

Skewness Kurtosis

5 ;25 & 4
KL divergence

Diaz Rivero & Dvorkin
(2020)



Test 2:

FBL for the convergence power spectrum

matrix
Test 1: t-stat of
skewness and
kurtosis
Test 3: KL
divergence

Skewness Kurtosis

i 7 Rivero & Dvorkin

0.00 025 050 075 1.0u

KL divergence (2020)




Implications

For our mock weak lensing data, GMM and ICA fail at capturing different NG, while the
FBL does much better.

Data volume is not the only thing that determines the success/failure of a DDL: some
understanding of the NG present in the data is crucial to select the right model.

€ Eg ICA inadequate for NGs across bins

FBL flexibility can preclude them from a trial-and-error procedure that other DDLs can

I equire. Galaxy power spectrum w/ 2,048 mocks (Hahn+ 2018) orange = data

. D(xmock ”N pGMM(Xmock))

Blue = gaussian

JEY, Rivero & Dvorkin
KL divergence KL divergence (2020)



Implications

But data volume obviously matters too!

Skewness

Mock Data
B DDL
Gauss.

Overlap fraction = 0.18

0.0 0.2
KL divergence

-0.2

ICA

Kurtosis

Overlap fraction = 0.44

0.0
KL divergence

Overlap fraction = 0.59

0.0
KL divergence

0.2

Diaz Rivero & Dvorkin
(2020)



Implications

WL in particular is interesting because:

- Seems to have some significant non-Gaussianities, even on scales where cosmic variance
doesn’t dominate (see also Sellentin+ 2016, 2018 1 & 2).

- Some WL works (inadvertently) Gaussianize the data (e.g. combining bins) before inferring
parameters, potentially destroying useful information, and conclude NG doesn’t shift
parameters (Lin+ 2019, Taylor+ 2019, Alsmg+ 2019).

‘ ‘ DB
to account foI the ﬁnal binning cholce As an unfortunate bvproduct of thlb need to Gaussw,mze the hkehhood the Té‘ oW Lg
power of the ACT PDF to simultaneously constrain og and P, is substantially weakened, simply because the shape o g A
of the PDF is not as well constrained when combining so many smaller bins into a single larger bin. A clear goal for _?::) © i:
future PDF analyses is to implement a more sophisticated, non-Gaussian likelihood function, allowing the full use of = &
the constraining power in the PDF. B qg) E

<

- Shortcomings of ICA in addressing pairwise non-Gaussian correlations in WL data: works
have used ICA dimensionality reduction before inferring parameters from weak lensing data
and concluded NG don’t impact parameter constraints considerably (Gupta+, 2018).

Diaz Rivero & Dvorkin
(2020)



Questions?



Non-Gaussianity in weak lensing data

Estimating covariances
(Sellentin+ 2016) SLICS, 0.30 arcmin

SLICS, 1.59 arcmin

SLICS, 5.05 arcmin

(|, £, N) = / dSN (x|, T) p(S[S, N) SHES: 835 aromin

Sellentin et al, Eq. (15)

Gauss( <S:'>)
\Gauss( o <S™ > )
|\ tdistribution

Percentual change in lensing amplitude
CFHTLenS &, 57260 3.66.7

CFHTLenS . ——— !
Gaussian Calibration Runs

0
-0.0002 -0.0001 0.0001 0.0002
£+




