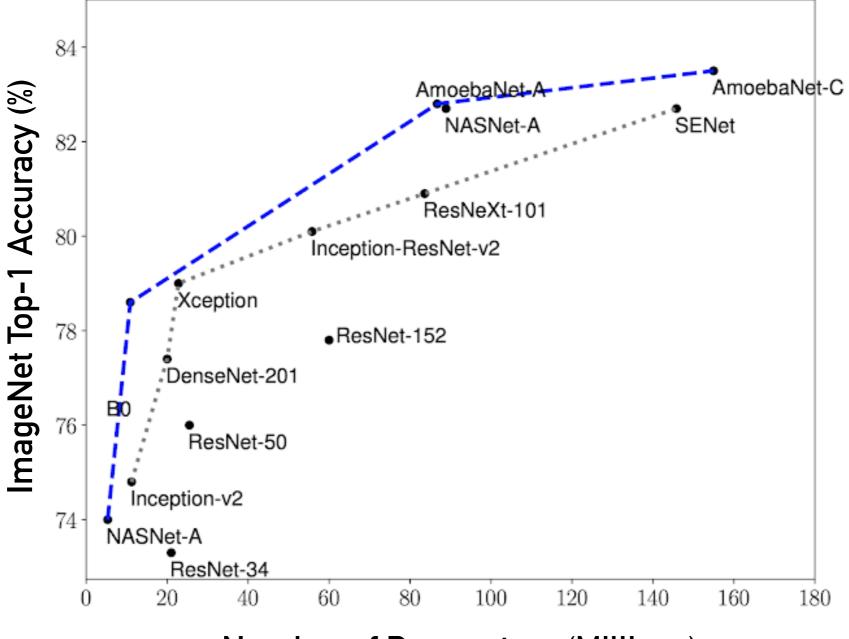
WIDE&SPARSENeural Networks

Are wider nets better given the same number of parameters?

A. Golubeva, G. Gur-Ari, B. Neyshabur ICLR 2021, arXiv:2010.14495

• Increasing the number of NN parameters improves performance.

Increasing the number of NN parameters improves performance.



Number of Parameters (Millions)

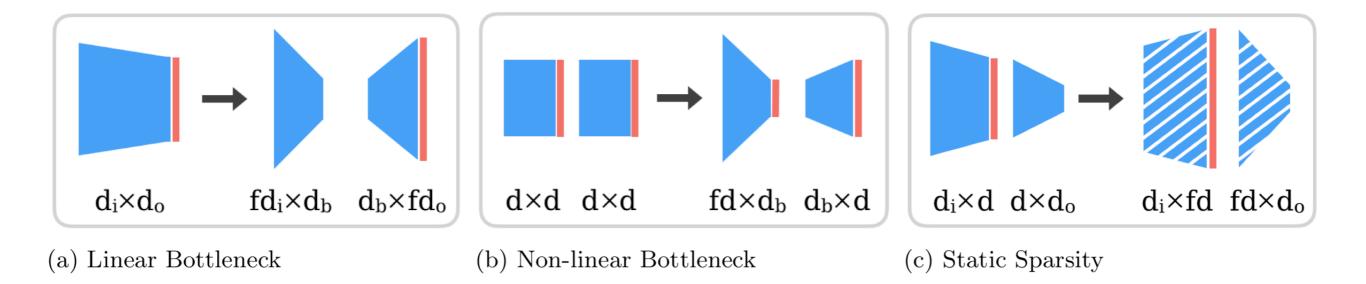
Figure from arXiv:1905.11946

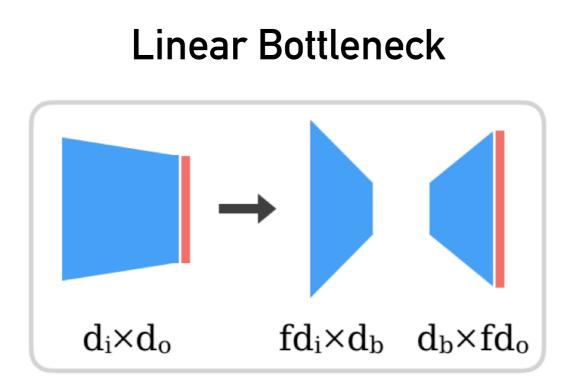
- Increasing the number of NN parameters improves performance.
- The number of parameters is increased along with layer width.

- Increasing the number of NN parameters improves performance.
- The number of parameters is increased along with layer width.

Is the performance gain due to more params or larger width?

How to increase width independently of the number of params?



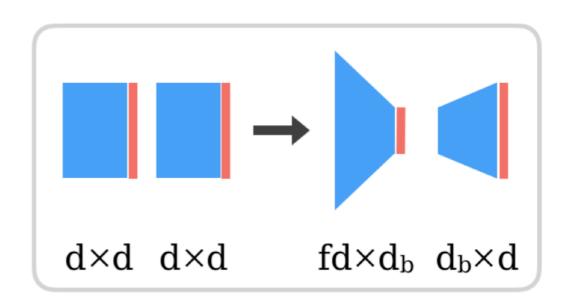


split each layer in two:

 $\begin{array}{cccc} W & \rightarrow & W_1 W_2 \\ \mathbb{R}^{d_i \times d_o} & \mathbb{R}^{d_i \times d_b} & \mathbb{R}^{d_b \times d_o} \end{array}$ increase d_i, d_o , reduce d_b no activation function added

- changes depth
- strongly affects trainability

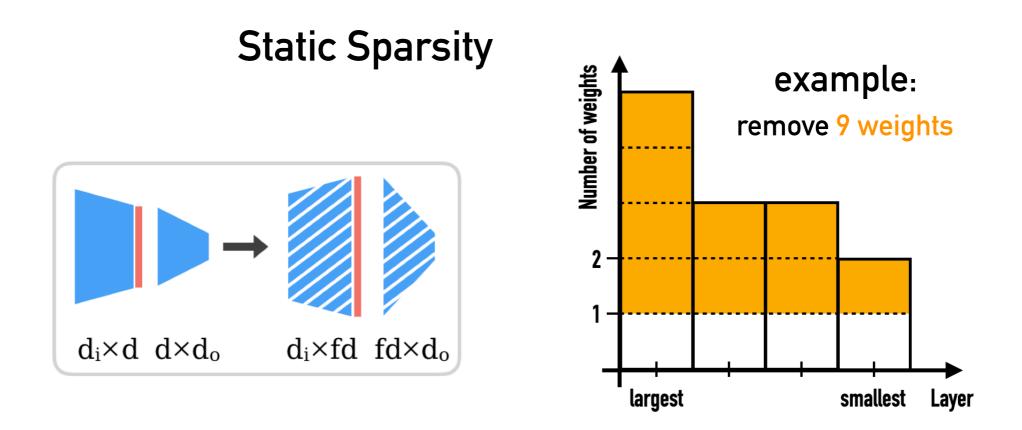
Non-Linear Bottleneck



modify layers in pairs:

increase the outer dimensions, reduce the inner dimension

leads to worse performance



- sparsity pattern: random, applied at initialization, static
- per-layer distribution according to layer size
- in-layer distribution uniform across all layer dimensions
- method advantage: it does not alter the NN structure
 - we are <u>not</u> aiming for performance gains through sparsity

Our approach in summary:

select model type and architecture
 baseline: dense model (full connectivity)

e.g. ResNet-18, with 32 output channels in the first conv layer

- fix the number of weights
- build a family of models having different widths and sparsity, but same number of weights

wide & sparse: increase the width and remove excess weights

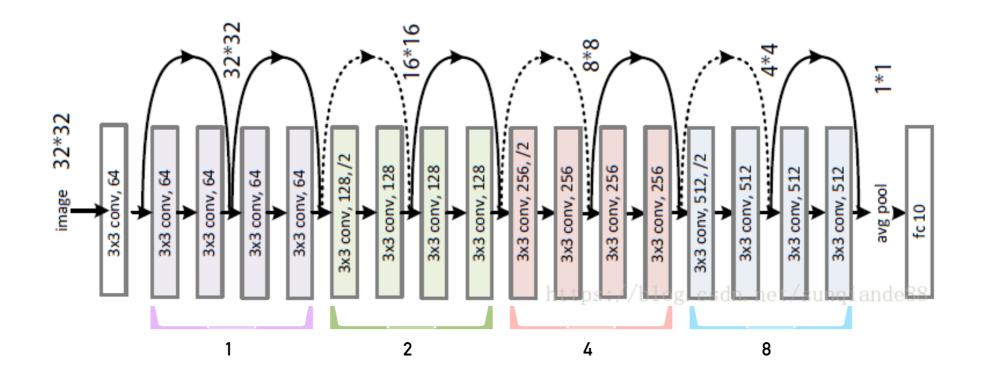
train and compare performance

(task: image classification)

Our approach in summary:

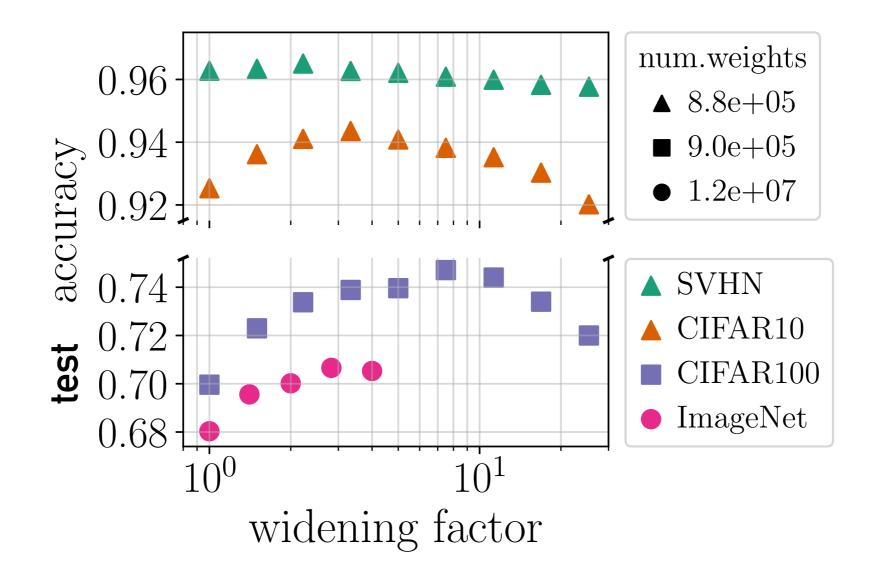
select model type and architecture

e.g. ResNet-18:



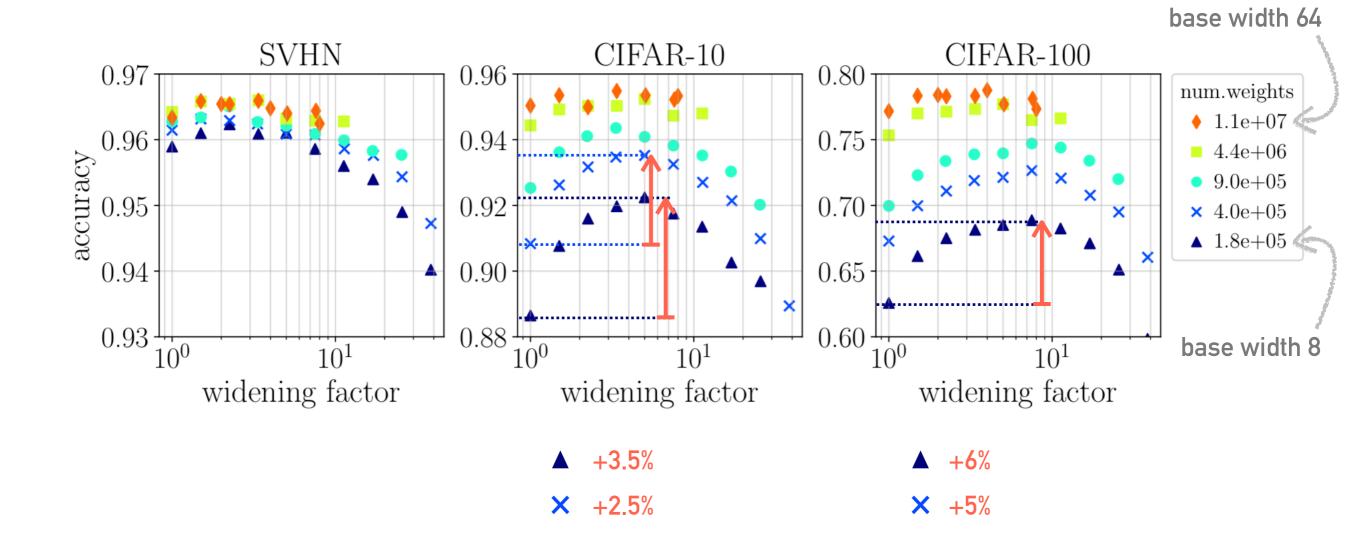
- model width = number of output channels in the first convolutional layer
- the widths of all subsequent layers are set according to 1:2:4:8

Results: ResNet-18



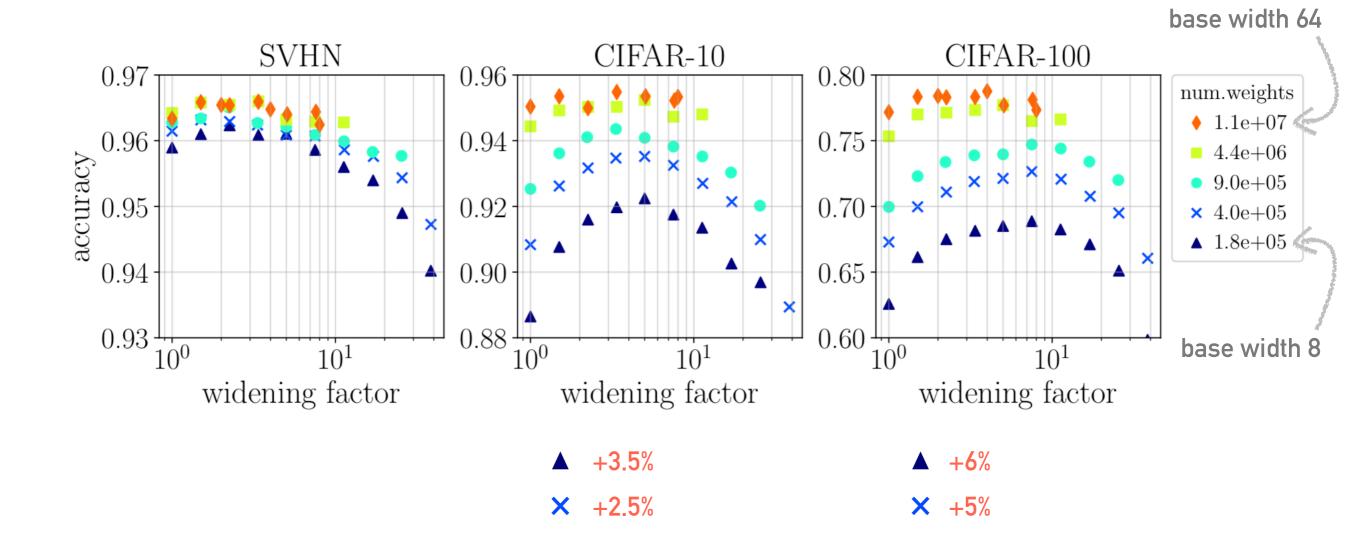
 performance improves as width is increased, even though the number of weights is fixed

ResNet-18 on CIFAR and SVHN



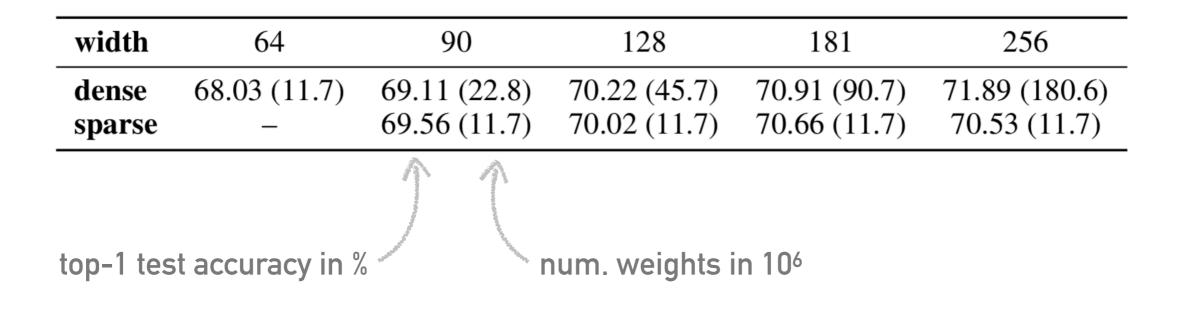
• the improvement is strongest for smaller models & harder tasks

ResNet-18 on CIFAR and SVHN



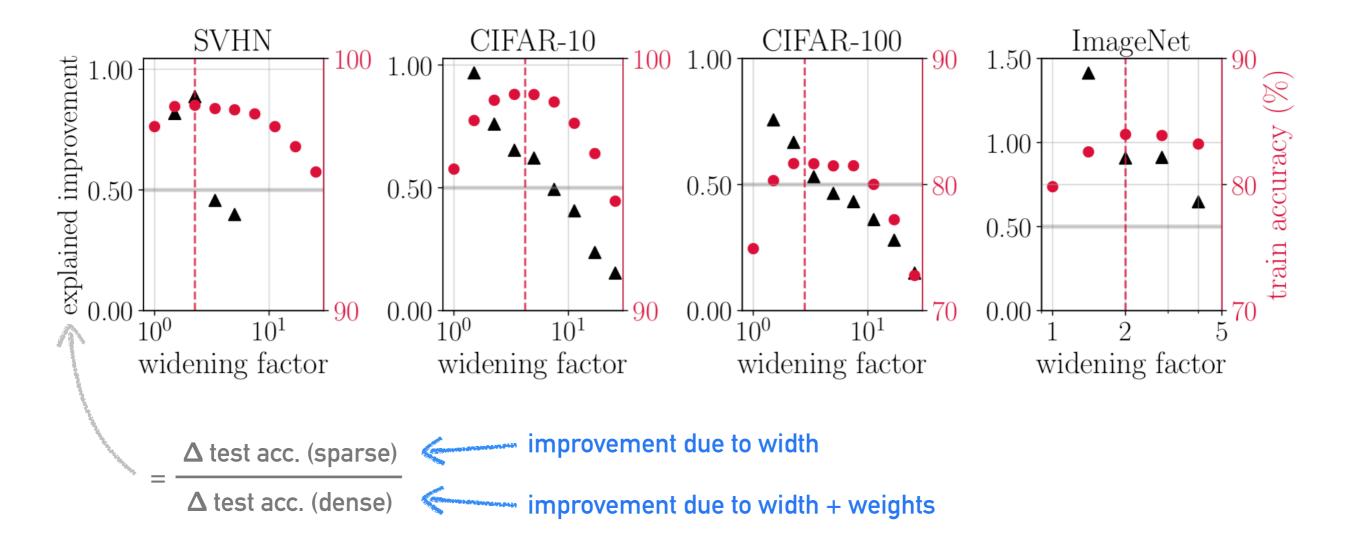
• the improvement is strongest for smaller models & harder tasks

ResNet-18 on ImageNet



 the improvement with increasing width obtained by the sparse models is on par with the dense models (up to a ceretain max. width) How much improvement is due to width only?

compare perf increase for wide & sparse to wide & dense models



 as long as the model can achieve high training accuracy, most of the improvement in performance can be attributed to the width

Theory: ∞-width limit and GP kernels

GP = **Gaussian Process**

- hypothesis: performance improvement is correlated with having a GP kernel that is closer to the ∞-width kernel
- hypothesis: the distance to the ∞-width kernel can be reduced by increasing network width without adding weights
- compute GP kernel of a sparse ReLU net with 1 hidden layer
- Find strong correlation between the model performance and the distance to the ∞-width kernel

Theory: ∞-width limit and GP kernels

network

$$f: \mathbb{R}^{d} \to \mathbb{R}^{D} \qquad f(x) = \alpha v[ux]_{+}$$

$$x \in \mathbb{R}^{d} \qquad u \in \mathbb{R}^{n \times d} \qquad v \in \mathbb{R}^{D \times n}$$

$$[z]_{+} = zH(z) \qquad \alpha \in \mathbb{R}$$
Heaviside step function
$$\mathbf{Pr}(\theta) = p \quad \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(-\frac{\theta^{2}}{2\sigma^{2}}\right) + (1-p) \quad \delta(\theta)$$

$$probability of param being non-zero$$

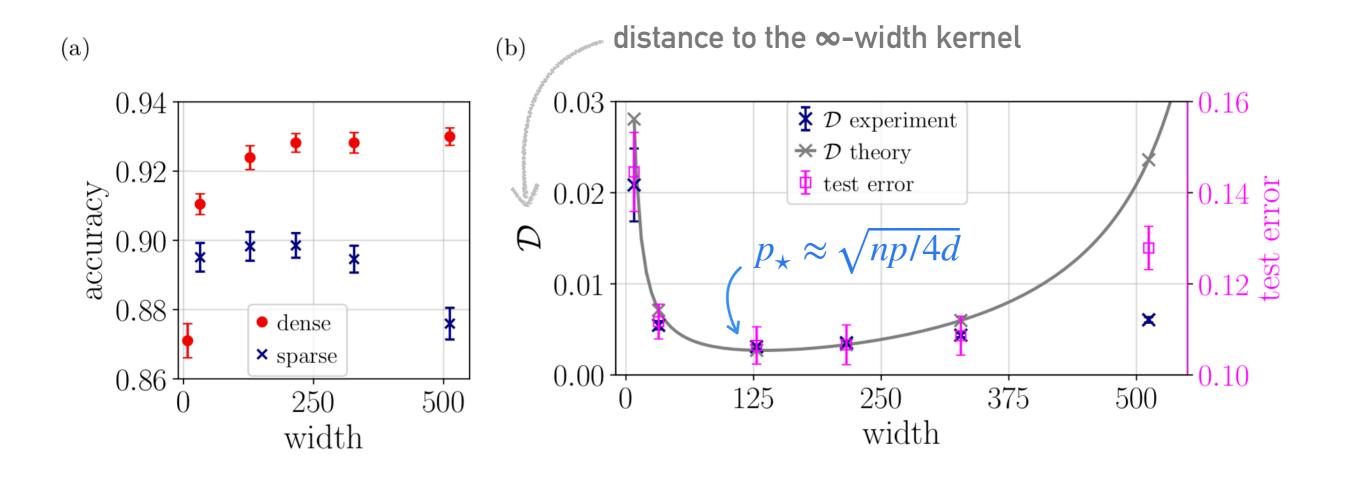
$$= connectivity$$

• **GP kernel**: $\Theta(x, y) = \nabla_v f(x) \cdot \nabla_v f(y)$

distance from the ∞-width kernel

 $\mathbb{E}_{\theta} \left[(\Theta_{\infty}(x,y) - \Theta_{n,p}(x,y))^2 \right]$ infinite-width kernel, dense

Sparse GP kernel and its distance to the ∞-width kernel MLP on MNIST, 1 hidden layer, ReLU

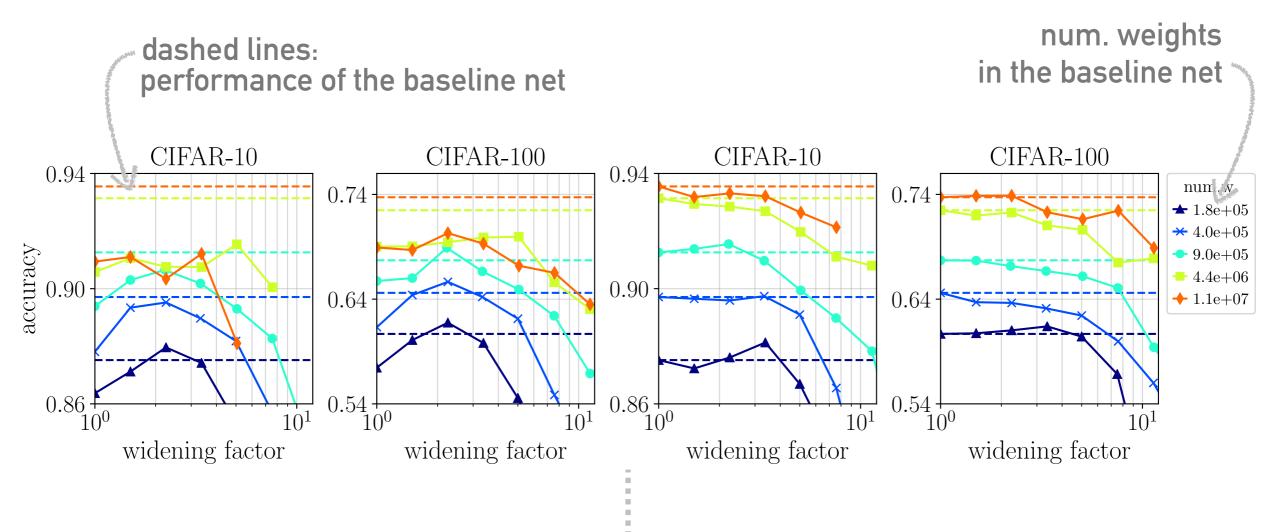


theory predicts optimal connectivity p_{\star} with np = const.

thanks!

аррх

Bottleneck Results



Linear Bottleneck

Non-Linear Bottleneck

MLP on MNIST 1 hidden layer

