Neural Mechanics:
Symmetry and Broken Conservation Laws in Deep Learning Dynamics

Q. Can we solve for complex learning dynamics?

VGG-16 on Tiny ImageNet
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Deep learning has been successful, but it's inner-workings are still mysterious

There is a myriad o

- design choices for a deep

These choices shape t

Architecture
RelLU or tanh?
Batch Normalization?
SoftMax?
Convolution?
Residual connection?

ne trajectory the network ta

earning system.

<es during training.

Oy

%

/éel Parameter space

00
oee Optimizer

How much weight decay?
How much momentum?

_earning rate schedule?
Batch-size?
Adaptive gradient?

Researchers and practitioners largely depend on heuristics and trial & error.

Better understanding of the dynamics is necessary for principled exploration ot the vast design space.

Q. What, it anything, can we quantitatively understand about the learning dynamics of

state-of-the-art deep learning models driven by real-world datasets?



Q. What, it anything, can we quantitatively understand about the learning dynamics of
state-of-the-art deep learning models driven by real-world datasets?

6 6 This question is difficult because of...

1. millions of parameters

‘ 6 @ ‘ 2. compositional non-linear functions

6 6 3. discrete updates by random batches of data

Existing works have simplitied the problem by making major assumptions on the architecture...

Single Hidden Layer Linear Networks Infinitely Wide
y = Q[Z:f(g[l:x) y = gLl pl2lgll], ol < RNUXNI N S oo
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Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel:

David Saad and Sara Solla. Dynamics of on-line gradient descent

learning for multilayer neural networks. 1995. nonlinear dynamics of learning in deep linear neural networks. 2013. Convergence and generalization in neural networks. 2018.



VGGET16 parameter dynamics combination dynamics
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Q. What, it anything, can we quantitatively understand about the learning dynamics ot
state-of-the-art deep learning models driven by real-world datasets?

6 6 In this work we don’t introduce major simplifying
assumptions on the architecture or optimizer!

Rather we identify and solve the simpler dynamics of parameter combinations.

Training time: ¢ Training time: ¢ Training time: ¢



Q. What, it anything, can we quantitatively understand about the learning dynamics of

state-of-the-art deep learning models driven by real-world datasets?

6 a In this work we don’t introduce major simplifying

assumptions on the architecture or optimizer!

Rather we identify and solve the simpler dynamics of parameter combinations.

Our theory matches
experiment exactly!

Parameter combinations: || Wi(?) | |2

Training time: ¢



Q. Can we solve for complex learning dynamics of real deep learning models?

W Part 1. Symmetry in the Loss Constrain Gradient and Hessian Geometries
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Part 2. Symmetry Leads to Conservation Laws Under Gradient Flow

Part 3. A Realistic Continuous Model for Stochastic Gradient Descent

Part 4. Combining Symmetry and Modified Flow to Derive Learning Dynamics

classifier




Q. Can we solve for complex learning dynamics of real deep learning models?

Part 1. Symmetry in the Loss Constrain Gradient and Hessian Geometries




Symmetry Constrain Gradient and Hessian Geometries

Symmetry: A function f(f) posses a symmetry 1f 1t invariant under the action 6 — w (6, a)
of a group G on the parameter vector 6, 1.e. if f(y (0, a)) = f(0) for any (O, a).

Geometric constraints: If a function f(€) posses a differentiable symmetry, then
Gradient Hessian

aaf (l/j) — <VJC9 aal//> =0 aﬁaaf (l//) — Hf ael//aal//+ aﬁaawvf =0

2

Example: f(x,y) = x? y
Step 1. Identity symmetry:

. R | x
Rotation: w(x,y,a) = <C98a - a) <y)
sSina@ Cos«a

Step 2. Evaluate gradient at identity:
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Symmetry Constrain Gradient and Hessian Geometries

Symmetry: A function f(f) posses a symmetry 1f 1t invariant under the action 6 — w (6, a)
of a group G on the parameter vector 6, 1.e. if f(y (0, a)) = f(0) for any (O, a).

Geometric constraints: If a function f(€) posses a differentiable symmetry, then
Gradient Hessian

aaf (l/j) — <VJC9 aal//> =0 aﬁaaf (l//) — Hf ael//aal//+ aﬁaawvf =0
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Example: f(x,y) = x? y
Step 1. Identity symmetry:

. R | x
Rotation: w(x,y,a) = <C98a - a) <y)
sSina@ Cos«a

Step 2. Evaluate gradient at identity:

(V. 0,4) =0
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Symmetry resides in all over the modern deep network architectures
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Symmetry unifies existing literature and yields 15 distinct geometric formulae

Geometric properties of the gradient.

Translation Scale Rescale
g(0) = g(¥(9,a)) diag(aa)g(¥(8,a)) diaglas, ©ay,)g(H(b,a))
g(0) L 14 0.4 04, — 04,
Geometric properties of the Hessian.
Translation Scale Rescale
H(f) = H((0,a)) diag(a)H (6, )) diag(aZ, ©® a2)H(¥(6, @)
0= H1 4 H9A+QA H(0A1_0A2)+9A1_9A2
0= 14Hl4 03 HO 4 04y —04,)TH(04, —04,) + 94,04, + 94,04,

Unifying existing literature through symmetry.

Translation Scale Rescale

00 F _ 1.2.5 6
VE 5 F _ 3.4 7.89

2F — 35  _
HF 0,0, F _ _ _

O2F _ _ 9

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. 2015

Twan Van Laarhoven. L2 regularization versus batch and weight normalization. 2017

Guodong Zhang, Chaogi Wang, Bowen Xu, and Roger Grosse. Three mechanisms of weight decay regularization. 2018

Zhiyuan Li, Kaifeng Lyu, and Sanjeev Arora. Reconciling modern deep learning with traditional optimization analyses: The intrinsic learning rate. 2020
Behnam Neyshabur, Russ R Salakhutdinov, and Nati Srebro. Path-sgd: Path-normalized optimization in deep neural networks. 2015

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit acceleration by overparameterization. 2018

Simon S Du, Wei Hu, and Jason D Lee. Algorithmic regularization in learning deep homogeneous models: Layers are automatically balanced. 2018

Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and James Stokes. Fisher-rao metric, geometry, and complexity of neural networks. 2019

Hidenori Tanaka*, Daniel Kunin*, Daniel LK Yamins, and Surya Ganguli. Pruning neural networks without any data by iteratively conserving synaptic flow. 2020.
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Q. Can we solve for complex learning dynamics of real deep learning models?

W Part 2. Symmetry Leads to Conservation Laws Under Gradient Flow

A



Symmetry Leads to Conservation Laws Under Gradient Flow

Gradient flow: The gradient descent update 87D = 8" — yg(6"™) with learning rate # is a forward
Euler discretization of the ODE known as gradient flow:

do

o — 8(0)

How do these learning dynamics interact with the geometric properties introduced by symmetry?

Translation Scale Rescale

\

(0,(1),1) = (6,(0),1) 10, > = 16,0 )* 16,0 = 10,01 =16, (0)]* = 16,,(0) |




Symmetry Leads to Conservation Laws Under Gradient Flow

Gradient flow: The gradient descent update 87D = 8" — yg(6"™) with learning rate # is a forward
Euler discretization of the ODE known as gradient flow:

do

o — 8(0)

How do these learning dynamics interact with the geometric properties introduced by symmetry?

Translation Scale Rescale

(04(0),1) = (0,(0),1) 10,017 = 10,07 16, O = 10,0)1* =16, (0)]* = 6,,(0)|

A version of Noether’s Theorem: Every symmetry* of a network architecture has a corresponding
conserved quantity through training under gradient flow. Projecting the gradient flow dynamics onto
the generator vector field generates an ODE, whose solution is a conservation law.

d

_ E<9’ aal//> = 0
Emmy Noether (1882 - 1935) ! *satisfying a mild assumption
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Parameter combinations: || W(?) | |

Does this theory agree with empirics?

Experiment Theory (Gradient Flow)

Training time: ¢ Training time: ¢
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No, conservation laws are broken empirically!
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Parameter combinations: || W(?)| |

Training time: ¢

Q. Why?

Gradient flow is too simple of a continuous model for SGD.
It fails to account for key building blocks of modern optimization:

weight decay
momentum

stochasticity
finite learning rates



Q. Can we solve for complex learning dynamics of real deep learning models?

Part 3. A Realistic Continuous Model for Stochastic Gradient Descent




Gradient flow is too simple, how can we construct a realistic continuous model for SGD?

Example: Quadratic Loss

do < =01A0
Gradient Flow: — = — ¢(0) —

dt ______________
Modeling weight decay (1): Weight decay changes the trajectory from gradient flow o
pulling the network to the origin in parameter space. -
40 = (0) — 10
i °

Modeling momentum (f): Momentum accelerates the learning dynamics rescaling
time, but leaves the trajectory intact.

(1—,5)%_— (0)
a - °

Modeling stochasticity: We model the batch gradient g 4(0) as a noisy version of the
tfull batch gradient g(@) such that,

85(0) =g0) +e

Blue curve: gradient flow

where E[e¢] = 0 and (g, 0 w) = (¢, d w) = 0 for any batch %. Red curve: modified trajectory



Modeling discretization: Gradient descent moves in the direction of steepest descent, but
due to a finite learning rate fails to remain on the continuous steepest descent path.

Q. Does there exist a “continuous equation of learning” that can accurately model the 0
effect of a finite learning rate?

A. Moditied equation analysis is a method for modeling the discrepancy introduced by
a discretization of a PDE with higher order “spatial” or “temporal” derivatives.

Modified Loss: Introduces higher order derivatives of the loss,
effectively modifying the loss landscape itself.

T

db

— _ o -1
= g(0) 2H(9)g(6’)

David G.T. Barrett and Benoit Dherin. Implicit Gradient Regularization. 2020.

Modified Flow: Introduces higher order temporal derivatives
modifying the flow directly.

do ) n d*0
dt 2 dt? v
Blue curve: gradient flow
Nikola B. Kovachki, Andrew M. Stuart. Analysis Of Momentum Methods. 2019. Red curve: moditfied trajeCtO ry

Black dots: discrete SGD steps



Q. Can we solve for complex learning dynamics of real deep learning models?

Part 4. Combining Symmetry and Modified Flow to Derive Learning Dynamics
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Q. How do weight decay, momentum, stochastic gradients, and finite learning
rates all interact to break these conservation laws?

1. Consider a realistic continuous model for SGD (weight decay and modified loss).

O 10 = "1
ar VT T 8T s

2. Project the learning dynamics onto the generator vector fields. (e.g. 0w = 9, (af) = 0).

3. Harness the geometric constraints introduced by symmetry.
(8.0)=0  (Hg.0)=—|g|’

40 /X N~
<E,9> + {0, 0) = —M — 5<H8a 0)

4. Solve the resulting ODE.

Spring Driving force
/1 2
X x1n|g|
< >

6]

+21101% = 2
" 01"=nlgl” | TVVVV ¥ _

Friction o
| 0]

Overdamped driven oscillator



Theory

Experiment

Theory (dotted lines) match the empirics (colored lines) pertfectly!
VGG-16 trained on Tiny ImageNet with SGD
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Theory & Experiment

Theory (dotted lines) match the empirics (colored lines) pertfectly!
VGG-16 trained on Tiny ImageNet with SGD
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Theory (dotted lines) match the empirics (colored lines) pertfectly!

Translation
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x103

Time (n X steps)

(0,(),1) decays exponentially to
zero at a rate proportional to the
weight decay.

Dynamics is independent of
earning rate and data due to the

ack of curvature in the gradient

field
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e Norm |0,,|* is the sum of an expo-
nentially decaying memory of the
norm at initialization and an

exponentially weighted integral of

gradient norms accumulated

through training.

[WA? = [[Wia][?

VGG-16 trained on Tiny ImageNet with SGD
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e Similar to the scale dynamics, the
rescale dynamics do depend on the
data through the gradient norms

* No guarantee that the integral term
is always positive.



Q. How do weight decay, momentum, stochastic gradients, and finite learning
rates all interact to break these conservation laws?

The continuous model for SGD with weight decay, momentum, and modified flow:

n(l + p) d*6 (1-5) do 0
- (1 — FA0=—¢g
2 df? dt
The ODE after projecting the dynamics:
21012 2 2
11+ ) d*|0) d|0) 2 d
+ (1 — ) + 240" =n(1 + f)| —
2 dt? g dt i/ dt
. . B =0 B =0.9 B8 =0.99
Spring Driving force 0.304- \
x A x |dOldt|* T | T
< > = 015w T N
-015{ - 4
~0.30{_—"

, , 0.00.40.8121.6 0.00.40.8121.6 0.00.40.8121.6
Underdamped driven oscillator
Time (1 X steps)

VGG@G-16 trained on Tiny ImageNet with SGD



Conceptual Overview

Classical Mechanics V.S. Neural Mechanics
eoo
oo
ooo
Z Oy
y Physical space /égl Parameter space
%
Equation of motion: Equation of learning:
Newton's Law (F(x) = md“x) Damped oscillator driven by loss gradients
Symmetries in Lagrangian: Symmetries in the Loss function:
Translation in time/space, Rotation Translation, Scale, Rescale
Conservation laws: Broken conservation laws:

Energy, momentum, angular momentum Dynamics of parameter combinations



Conclusion and Future Work

Two "hammers” developed and used in this work:
1. Symmetry: A unifying theoretical framework explaining how a network’s architecture leads to

geometric properties in the gradient and Hessian.

2. Modified Gradient Flow: A realistic continuous equation modeling SGD with weight decay,

momentum, stochasticity, and discretization.

And the “nails”... Where next?

1. Network Pruning Task

Hidenori Tanaka*, Daniel Kunin*, Daniel LK Yamins, and Surya Ganguli.
Pruning neural networks without any data by iteratively conserving synaptic flow. NeurlPS 2020.

2. Continual learning

Ekdeep Singh Lubana, Puja Trivedi, Robert P. Dick.
Rethinking Quadratic Regularizers: Explicit Movement Regularization for Continual Learning. 2021

Learning

3. Effective learning rate of BatchNorm Model o
uie

Zhiyuan Li, Sanjeev Arora
An Exponential Learning Rate Schedule for Deep Learning. ICLR 2020
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