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Learning machines? 

Instead of trying to produce a programme to 
simulate the adult mind, why not rather try to 
produce one which simulates the child's ? If this 
were then subjected to an appropriate course of 
education one would obtain the adult brain …..

We have thus divided our problem into two parts. 
The child-programme and the education process. 

Alan Turing, Computing Machinery and 
Intelligence,  Mind 59, 433 (1950)



Hyper-astronomical numbers and Boolean choices

Send to 
hospital?

Fever? Cough? Lost 
sense of 
smell?

Body 
ache?

Recent 
travel to 
hotspot?

Over 50? Heart 
problem?

Obese? Diabetes?

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 0 1 1 1

0 1 1 1 1 1 0 0 0 0

1 1 1 1 0 0 1 0 1 1

0 1 1 0 0 0 1 0 1 1

n questions;       2n possible answers;   2!! possible Boolean functions

For n=9            29 = 512 answers;     2512 =1.34 X 10154 possible functions

(1086 elementary particles in observable universe) .
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Can we learn the rest of the function? 

Doctor’s decision table for COVID-19 



Mari 08613 tablet
(Old Babylonian. 1900-1600 BC)

A barley-corn: to a single barley-corn I increased,
2 barley-corns in the 1st day;
4 barley-corns in the 2nd day; 
8 barley-corns in the 3rd day; 
“
“
“
30  2 ‘thousand’ 7 ‘hundred’ 37 talents 1/2 mina 2 1/3 shekels 4 
barley-corns in the 30th day.

Jöran Friberg (2005), Unexpected Links Between Egyptian and Babylonian Mathematics,

(47 tons of Barley)

Hyper-astronomical numbers in history



Invetion of Chess: Shah-nama "The Book of Kings” by  Ferdowsi, (940 – 1020) 

Barley corn and chess board story  recounted by Ibn Khallikan c.a. 1254.

264-1= 18,446,744,073,709,551,615 (18 quintillion)  > 1000 times current annual wheat production 

Hyper-astronomical numbers in history



All
• L=37 proteins weigh more than earth
• L=58 proteins weigh more than the 

visible universe
• L=476 proteins: 10500 times the mass of 

the visible universe    

Proteins:  20L RNA:  4L

All
§ L=55 RNA strands weigh 1010 kg 
• L=79 RNA strands  weigh more 

than the Earth
• L=126 RNA  weigh more than 

the visible universe

AAL, Contingency, convergence and hyper-astronomical numbers in biological evolution
Studies in History and Philosophy of Biological and Biomedical Sciences 58, 107 (2016)

Hyper-astronomical numbers in biology

http://dx.doi.org/10.1016/j.shpsc.2015.12.014


SELEX in-vitro evolution experiments:

Salehi-Ashtiani K, Szostak JW. In vitro evolution suggests multiple origins for the hammerhead ribozyme. Nature. 414, 82 (2001).

Evolving the same structure again and again

Hammerhead ribozyme L≈55, so all 4L combinations weigh 1010 kg

Random
RNA Select and

repeat

Experiment is on ~  0.01g of material, about ~ 1/1015 fraction of the space 

Question:   Convergence: Natural selection or the arrival of variation? 

Hammerhead ribozyme
appears every time



RNA Genotype à Phenotype map

Tertiary structure (3D) Secondary structure
(who bonds to whom) 

GAAAGUCUGGGCUAAGCCACUGAUGGUGUCUGAAAUGAGAGGAAAACUUUUG

Folding 
GP map

Hammerhead ribozyme



9

Model GàP map: RNA secondary structures

Genotype
Phenotype

Sequence
Structure

NG = 4L

Fast thermodynamic folding algorithms: e.g. Vienna package
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Figure 3.5: The most abundant RNA secondary structures for L = 15. The diagram
shows 30 most abundant (top) structures at the top; these structures together contain 56%
of all non-trivially folding genotypes; at the bottom, the 10 least abundant structures are
shown. Below each structure, the exact number of sequences folding into the respective
structure are shown. Just as in Fig. 3.2, the backbone is shown in black, base-pairs are
drawn in green and the 5� end of the structure is marked by the dot.

of course we cannot confidently conclude that the scaling should be purely exponential. More

interestingly, the number of frequent phenotypes (ie. the phenotypes of more than average

43

L=15:   415 ~ 109 sequences; these map to 431 phenotypes (note big bias!) 

26/431 take up 50% of G-space 
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Hammerhead ribosome is anomalously many sequences mapping to it (large neutral set)  

Kamaludin Dingle, Steffen Schaper, and Ard A. Louis, Interface Focus 5 (6), 20150053 (2015)

Green: Set of 504 sequences from functional RNA database 

Uniform sampling phenotypes

Uniform sampling genotypes

1033 sequences à 1013 structures.



Why the strong bias?



INTUITION:
What is the probability that a monkey types out X digits of π  on an N key typewriter ?

P(X) = (1/N)^(X+1)

But what if the monkey types into C ? P(X) ≲ (1/N)^133

3.14159265358979323846264338327950288419716939
937510582097494459230781640628620899862803482
534211706798214808651328230664709384460955058
223172535940812848111745028410270193852110555
964462294895493038196442

3.14159265358979323846264338327950288419716939
937510582097494459230781640628620899862803482
534211706798214808651328230664709384460955058
223172535940812848111745028410270193852110555
964462294895493038196442

C program due to Dik Winter and Achim Flammenkamp (See Unbounded Spigot Algorithms for the Digits of Pi, by Jeremy 
Gibbons (Oxford CS), Math. Monthly, April 2006, pages 318-328.) 

133 character (obfuscated) C code to calculate first 15,000 digits of π

2/17/2016 Pi the Number, not the Movie

http://ZZZ.cs.utsa.edu/aZagner/pi/pi.html 1/3

Pi the Number, not the Movie

RefeUeQceV aQd digiWV Rf Pi:

HHUH DUH WZR H[FHOOHQW UHIHUHQFHV DERXW SL:

TKe LLfe Rf PL, E\ J.M. BRUZHLQ.
LLfe Rf PL RQ VOLdeV, E\ J.M. BRUZHLQ.

HHUH DUH OLVWLQJV RI GLJLWV RI SL WR GLIIHUHQW EDVHV:

SL WR 40000 decLPaO dLJLWV,¬
SL WR 20000 Ke[ dLJLWV,¬
SL WR 10000 baVe 36 dLJLWV,
SL WR 10000 baVe 62 dLJLWV (XVLQJ 0-9,A-=,D-]).

7KH MD\ 6, 1993 HSLVRGH RI The SiPSVRQV KDV WKH FKDUDFWHU ASX ERDVW "I FDQ UHFLWH SL WR 40,000
SODFHV. 7KH ODVW GLJLW LV RQH." 6HH WKH 40000 GLJLWV DERYH, ZKHUH WKH 40000WK RQH LV UHG. (A FROOHDJXH
RI BRUZHLQ DFWXDOO\ VXSSOLHG WKLV LQIRUPDWLRQ WR WKH 6LPSVRQ'V SURJUDP: VHH "LLIH RI PL RQ VOLGHV"
DERYH.)

7KH PRVW LQWHUHVWLQJ GHFLPDO UXQ LQ Si VWDUWV LQ SRVLWLRQ 762 (URZ 7, FROXPQ 7), ZKHUH 9999998 RFFXUV.

E[SUHVVLRQV JLYLQJ DQ DSSUR[LPDWLRQ RI SL: SL fURP aQ e[SUeVVLRQ.

C SURgUaP giYiQg 15000 digiWV Rf Si:

5DELQRZLW] DQG :DJRQ JDYH DQ DPD]LQJ DOJRULWKP WR FRPSXWH GHFLPDO GLJLWV RI SL, EDVHG RQ WKH VHULHV
JLYHQ EHORZ. 7KH "DOJRULWKP XVHV RQO\ ERXQGHG LQWHJHU DULWKPHWLF DQG LV VXUSULVLQJO\ HIILFLHQW.
MRUHRYHU, LW DGPLWV H[WUHPHO\ FRQFLVH LPSOHPHQWDWLRQV. :LWQHVV, IRU H[DPSOH, WKH IROORZLQJ
(GHOLEHUDWHO\ REIXVFDWHG) C SURJUDP GXH WR DLN :LQWHU DQG AFKLP FODPPHQNDPS ...." (6HH
UQbRXQded SSigRW AlgRUiWhPV fRU Whe DigiWV Rf Pi, E\ JHUHP\ GLEERQV, MDWK. MRQWKO\, ASULO 2006,
SDJHV 318-328.)

C SURgUaP WR caOcXOaWe 15000 digiWV Rf Si The FRUPXOa XVed

a[52514],b,c=52514,d,e,f=1e4,g,h; 
PaiQ()^fRU(;b=c-=14;h=SUiQWf("%04d", e+d/f)) 
fRU(e=d%=f;g=--b*2;d/=g)d=d*b+f*(h?a[b]:f/5),a[b]=d%--g;` 

OXWSXW Rf a UXQ

KeUe (ZLWK QHZOLQHV LQVHUWHG E\ KDQG), RU KeUe

7KLV LV FDOOHG D VSigRW algRUiWhP EHFDXVH LW VSLWV RXW GLJLWV DV LI IURP D VSLJRW. OWKHU YHUVLRQV RI WKLV
SURJUDP FDQ EH IRXQG RQ WKH IQWHUQHW. 6WLOO, ZLWK WKLV PHWKRG RQH KDV WR FRPPLW DKHDG RI WLPH WR D
VSHFLILF QXPEHU RI GLJLWV WR FDOFXODWH. 7KH QH[W PHWKRG GRHVQ'W KDYH WKLV ZHDNQHVV.

CaOcXOaWiQg aUbiWUaUiO\ PaQ\ digiWV Rf Si:
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Formalizing the monkey intuition with AIT: 
Kolmogorov complexity

A.N. Kolgomorov
1903-1987

G.J. Chaitin
1947--

01010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101

0111010100110010111101111011010100001000101110101010011010111110111010010100011101110110110111010 

Kolmogorov/Chaitin complexity K(X) is the length in bits 
of the shortest program on a UTM that generates X

K is universal, (not UTM dependent) because you can 
always write a compiler => O(1) terms. 

K_U(X) = K_W(X) + O(1) ≈  K(X)

K is not computable due to Halting problem.

new intutions
-- A random number is one for which K(X) ≳ |X|
-- The complexity of a set can be << than complexity of elements of the set

asym
ptotically

simple

complex

Warning: you don’t know for sure that it is complex, t could be encoding π= 3.141592653589793238462 …..



R. Solomonoff
1926-2009

Intuitively: simpler (small K(X)) outputs are much more likely to appear

Solomonoff, R., "A Preliminary Report on a General Theory of Inductive Inference", Report V-131, Zator Co., Cambridge, Ma. Feb 4, 1960, revision, Nov., 1960.  

PU(X) =
X

l:U(l)=X

2�l = 2�K(X) + ....

K(X)  log2PU(X)  K(X) +O(1)

PU(X)  2�K(X)+O(1)

1

First term is the biggest one

Sum all codes that generate X 
on a prefix machine

Formalizing the monkey intuition with AIT:
Algorithmic Probability

It seems to me that the most important discovery since Gödel was the discovery by Chaitin, Solomonoff and Kolmogorov of the 
concept called Algorithmic Probability,. Everybody should learn all about that and spend the rest of their lives working on it. 
Marvin Minsky (2014)
h"ps://www.youtube.com/watch?v=DfY-DRsE86s&feature=youtu.be&t=1h30m02s

https://www.youtube.com/watch%3Fv=DfY-DRsE86s&feature=youtu.be&t=1h30m02s


L. Levin, 1948 --

L. A. Levin. Laws of information conservation (non-growth) and aspects of the foundation of probability theory.
Problems of Information Transmission, 10:206–210, 1974. 

A priori probability estimates from structural descriptional? complexity

Kamaludin Dingle1 and Ard A. Louis1

1
Rudolf Peierls Centre for Theoretical Physics, University of Oxford, UK

(Dated: September 7, 2016)

Many real world systems can be described using finite discrete input-output maps.
If an input is selected at random, what is the probability P (x) that a given map
generates a particular output x? Without knowing details of the map it may seem
hard to do better than a uniform a priori probability for generating any possible
output. Here, by extending fundamental results from algorithmic information theory,
we show instead that for many real world maps, the a priori probability decays
exponentially with the descriptional complexity K(x) of output x, with an upper
bound P (x) . 2�aK(x)�b which is tight for most inputs. The constants a and b and
many other properties, such as the number of outputs, or whether P (x) > P (y) or vice
versa for two di↵erent outputs x and y, can be predicted with only minimal knowledge
of the mapping. We demonstrate the generality of these principles for applications
ranging from the folding of RNA secondary structures to the Black-Scholes equation
from financial mathematics.

Discrete input-output maps are widely used in science and engi-
neering. Many systems are intrinsically discrete, such as mod-
els of the mapping from genotypes to phenotypes in biology, or
networks of Boolean logic functions in computer science. But
discrete maps can also arise by coarse-graining continuous sys-
tems. Examples include di↵erential equations, where the inputs
are discretised values of the equation parameters, and the out-
puts are discretised values of the solutions for a given set of
boundary conditions. Such a wide diversity of possible maps
might at first sight suggest that, without known details of a
particular map, there are no grounds for predicting one output
to be more likely than another. Thus the a priori expectation
for the probability of obtaining a certain output upon random
sampling of inputs would be given by a uniform distribution.

On the other hand, this problem has been studied, albeit in
in a very abstract way, in a field called algorithmic informa-
tion theory (AIT), founded by Solomono↵1, Kolmogorov2 and
Chaitin3,4. Their fundamental insight was to describe the infor-
mation content or descriptional complexity of a discrete object
such as a binary string x in terms of the length of the shortest
program that generates x on universal Turing machine (UTM).
This measure is called the Kolmogorov-Chaitin complexity or
simply Kolmogorov complexity K(x) of x.

One of the many beautiful properties of K(x) is that it is
asymptotically independent of the UTM that is used. More
precisely if we define KU (x) as the the length of the shortest
program that generates x on UTM U , and define KV (x) in an
analogous way for UTM V , then |KU (x)�KV (x)| < M , where
M is a constant independent of x. Very loosely speaking, M
is the length of a program (compiler) that one UTM can use
to simulate the other. This invariance theorem can also be ex-
pressed as KU (x) = KV (x) + O(1). In the asymptotic limit
of large complexities these di↵erences can be neglected (i.e. the
O(1) terms, which are independent of x, can be ignored) and the
subscript U or V is dropped so that we speak simply of K(x)
which is a property of x only. In this way AIT di↵ers funda-
mentally from Shannon information theory because the latter is
fundamentally a statistical theory about distributions, whereas
the former is a theory about the information content of indi-
vidual objects. We provide a longer description of AIT, with
some further technical definitions, in Supplementary Informa-

tion ??. More complete descriptions can be found in standard
textbooks5,6.
Coding theorem connects probability and complexity
Interestingly, the earliest formulation of AIT (by Solomono↵1)
was in terms of the probability P (x) that a UTM generates an
output x upon random input programs. If one assumes that the
probability of generating a binary input program of length l is
simply 2�l (which is true for prefix codes, see Supplementary
Information ??) then the most likely way to obtain output x by
random sampling of inputs is with the shortest program that
generates it, a string of length K(x). Since there may also be
longer input programs that generate x, this provides a lower
bound 2�K(x)

 P (x). Later, Levin’s coding theorem7 also set
an upper bound, and so established a more general connection
between the probability P (x) and the (prefix) Kolmogorov com-
plexity K(x) of the output:

2�K(x)
 P (x)  2�K(x)+O(1) (1)

This fundamental result means that ‘simple’ outputs, with
smaller K(x), have an exponentially higher probability of be-
ing generated by random input programmes for a UTM than
complex outputs with larger K(x) do.

Unfortunately, the direct application of these results from
AIT to many practical systems in science or engineering suf-
fers from a number of well known problems. Firstly, due to
the halting problem8, K(x) is formally incomputable, meaning
that in general there cannot exist any method that takes x and
computes K(x)6. Secondly, many key AIT results, such as the
invariance theorem or the coding theorem, only hold up to O(1)
or logarithmic terms which are unknown, and therefore can only
be proven to be negligible in the asymptotic limit of large K(x)
values. Thirdly, many of the input-output maps from science or
engineering are computable, that is they are not UTMs. Thus
while the results of AIT are extremely general and elegant, it is
not obvious how well they translate to many real world systems.

On the other hand, the intuition behind the coding theorem
– complex outputs are harder to generate by random sampling
of inputs than simpler ones are – seems very general. Moreover,
the prediction is very strong: an exponential decrease in prob-
ability upon a linear increase in complexity. Intuitively, such a
strong relationship might be expected to have influence even in

Serious problems for applying coding theorem

1) Many systems are not Universal Turing Machines
2) Kolmogorov complexity K(x) is formally incomputable
3) Only holds in in the asymptotic limit of large x…

We should teach this much more widely!

Formalizing the monkey intuition with AIT:
The Coding Theorem

Intuitively: simpler (small K(X)) outputs are much more likely to appear



AIT coding (like) theorem for non UTM maps

Proof sketch:
1) For simple maps f, with input size n we can calculate the whole set of input à

output  at O(1) cost  (complexity of a set << elements of set)
2) Encode this with a Shannon-Fano-Elias (SFE) code for which P(x) ~ ½^length 

– O(1)
3) This procedure gives a bound on the Kolmogorov complexity  given f and n

10

We follow a general method outlined in Ref. (10), which applies to any computable function. Consider the algorithm:
(i) Enumerate all inputs using n
(ii) Map these inputs to their outputs according to the rules specifying the map f
(iii) Print the resulting list of each output x and its corresponding probability P (x) (i.e. frequency/NI).

Now, it is well known (10) from information theory that given a discrete distribution, one can e�ciently encode outputs
using a Shannon-Fano-Elias (SFE) code, which consists of prefix-free code words E(x) of length (in bits)

l(E(x)) =

⇠
log2

✓
1

P (x)

◆⇡
+ 1 (B1)

where d·e denotes taking the integer part. In this manner, we have a method for assigning bit strings to outputs x. So,
using a SFE code, and given f and n, we can describe any output x using l(E(x))+O(1) bits, where the O(1) term accounts
for the fixed program to generate the SFE code. Because Kolmogorov complexity gives the shortest possible description
length (within O(1) terms) for a given UTM, we must have that K(x) of a given output x is no larger than the SFE code
description just derived, i.e.

K(x|f, n)  l(E(x)) +O(1) (B2)

= log2

✓
1

P (x)

◆
+O(1) (B3)

) P (x)  2�K(x|f,n)+O(1) (B4)

as required.
Note: Abusing notation slightly, we have used the letter f to denote both the function, as well as to denote the program

for implementing the function f .

2. Lower bound

A known probabilistic lower bound for computable functions is as follows (9; 11): With probability at least 1� 1/r

2�K(x|f,n)+O(1)

r
 P (x) (B5)

which implies that K(x|f, n) predicts P (x) with high probability (i.e. for most inputs) (9; 11), even if possibly for many
outputs P (x) ⌧ 2�K(x|f,n). In other words, this means that for random inputs we can expect P (x) ⇡ 2�K(x|f,n), or by

ansatz P (x) ⇡ 2�aK̃(x)�b, but that possibly P (x) ⌧ 2�aK̃(x)�b also for many inputs and outputs.
In terms of a logP (x) vs. complexity plot, this means that we can expect that the upper bound is tightest for complexity

values which are most probable, i.e. the modal complexity value. In particular, the maximum probability among outputs
with modal complexity is likely to be very close to the upper bound. This does not necessarily mean that the outputs which
individually have highest probability will be closest to the bound, and indeed they could be far from the bound. Rather, if
sampling yields that outputs of complexity 20 bits, say, are most likely to be generated, then the highest probability output
for complexity 20 can be expected to be close to the upper bound.

3. Many outputs must have probabilities below their upper bounds

We always expect some outputs to have probabilities below their upper bounds: If P is uniform, then for simple x

P (x) =
1

NO
⌧ 2�K(x|f,n)+O(1) (B6)

so simple outputs are below their upper bounds. On the other hand, if the distribution is non-uniform, with many simple
outputs having high probability, then necessarily many outputs must have below-average probabilities, i.e.

P (x) ⌧ 1

NO
 2�K(x|n)+O(1) (B7)

Or in short, 2�K(x|f,n) is a good estimate of P (x) for x from random inputs, but x from non-random will be far below
the 2�K(x|f,n). Alternatively, because K(x|f, n)  log2(x) + O(1), we can estimate the total probability if all ouputs were

NOTE: upper bound only!

K. Dingle, C. Camargo and A.AL,  Nature Communications  9, 761 (2018) 



assumption that the exponent in Eq. (4.17) is related to our approximation K̃(x) by

K(x|A) +O(1) ⇡ aK̃(x) + b (4.23)

for constants a > 0 and b. These constants account for the O(1) term, potential

idiosyncrasies of the complexity approximation K̃, and other possible factors arising

from our approximations. Hence we approximate Eq. (4.17) as

P (x) . 2�aK̃(x)�b (4.24)

Note that the constants a and b depend on the mapping, but not on x.

As we discuss in the next Section and the example maps below, the values of a

and b can often be inferred a priori using one or more of: The complexity values of all

the outputs, the number of outputs (NO), the probability of the simplest structure,

or other values.

4.5 Making predictions for P (x) in computable maps

We can often make predictions about the values of a and b (Eq. (4.24)), via various

methods. Essentially we use any piece of information about the outputs or their

probabilities that is available to estimate, bound or approximate the values of a and

b. We now describe some methods, which we apply to various maps in the next

Section of this Chapter.

4.5.1 Estimating the range of K(x|A)

We will now estimate the range of values that we expect K(x|A) to assume. We

begin with a lower bound on possible complexity values: Given A we can compute

all the inputs, and produce all NO outputs. Hence, we can describe any x 2 O by its

index 1  j  NO in the set of outputs O. Therefore

K(x|A)  log(j) +O(log(log(j))) (4.25)

95

NOTE: upper bound only!

1) Computable input-output map f: I à O
2) Map f  must be simple – e.g. K(f) grows slowly with system size -- then

K(x|f,n) ≈ K(x) + O(1) 
1) K(x) is approximated, for example by Lempel Ziv compression or some other 

suitable measure.
2) Constants a and b depend on mapping only and can be approximated fairly easily.
3) Bound is tight for most inputs, but not most outputs.
4) Maps must be a) simple, b) redundant, c) non-linear, d) well-behaved (e.g. not a 

pseudorandom number generator)
5) There is also a statistical lower bound.

K. Dingle, C. Camargo and A.AL,  Nature Comm 9, 761 (2018); K. Dingle, G. Valle-Perez, AAL, Sci. Rep. 10, 4415 (2020

Kamal Dingle Chico Camargo

(2 Dphils of work)

AIT coding (like) theorem for input-output maps



RNA map shows simplicity bias 12

I suggest we drop the polynomial curves - the RNA makes the point very nicely and we should probably leave it at that

X. RNA SECONDARY STRUCTURES

In this section we show some explicit structures x for L = 55 RNA as well as their complexities and probabilities P (x).
The highest probability structure for each complexity, with format (complexity, log10 probability, structure), is as follows

[[7.0, -0.13, ’.......................................................’],
[31.0, -2.01, ’.....................................((((.....)))).....’],
[34.0, -2.01, ’..((((((.....))))))....................................’],
[37.0, -3.38, ’................(((((..(((((.......)))))..)))))........’],
[41.0, -2.95, ’.....................(((..(((........)))..)))..........’],
[44.0, -3.08, ’((((.(((((........)))))))))............................’],
[44.0, -3.15, ’..............((((.(((.....))))))).....................’],
[47.0, -2.81, ’..............................((((..(((.....)))..))))..’],
[51.0, -2.99, ’..........................((((.(((........))).)))).....’],
[54.0, -2.95, ’.............................((..((((.....))))..)).....’],
[58.0, -3.48, ’..(((.((((((...............)))))).)))..................’],
[61.0, -3.86, ’............((((..((((((.......)))))).)))).............’],
[61.0, -5.06, ’(((.(((...))).)))............(((((....)))))............’],
[64.0, -4.21, ’...........(((((.((....((((........))))....)).)))))....’],
[64.0, -4.38, ’.(((((.((....((((......))))...)).))))).................’],
[68.0, -4.29, ’...............(((.((..(((((.....)))))..)).))).........’],
[71.0, -4.55, ’(((.((((...((((((.........))))))..)))).))).............’],
[75.0, -5.32, ’.............(((((.(..((....(((......)))....))..).)))))’],
[78.0, -5.84, ’(((.((.....(((...(((((....)))))..)))....)).))).........’],
[78.0, -5.28, ’.............(((.((((..((.((((((....)))))).))..)))).)))’],
[81.0, -6.01, ’((((..((((((....(((.(......).)))....))))))...))))......’],
[85.0, -6.41, ’(((((...(((..(....)..)))...))))).((((.((....)).))))....’],
[88.0, -6.54, ’...((.((((((..(..(((..((((....))))..)))..)..)))))).))..’],
[88.0, -7.67, ’.(((((...(((((((.....)))).)))..)))))...((.(((....))).))’],
[92.0, -7.94, ’((..((....))..)).((((((......))))))((.(((....))).))....’],
[95.0, -7.46, ’((..(.....(((((((..(.((((....)))).)..))))))).....)..)).’]]

The lower probability structures are clearly much more complex than the higher probability structures.
For completeness, below we show a range of structures corresponding to the most and least probable, all with one common

complexity value (75 bits). The format is (complexity, log10 probability, structure).

Top 10 highest probability structures of complexity 75.0
[[75.0, -8.445, ’.............(((((.(..((....(((......)))....))..).)))))’],
[75, -8.519, ’((((..(((....)))..))))...........((((((.((....)).))))))’],
[75, -8.523,’.........(((.(((..((((...(((.......)))....))))..))).)))’],
[75, -8.536’....((.(((((((((..(((.....)))..))).)))))).))...........’],
[75, -8.545, ’.......(((.((((((...((.((....)).))..)))))).))).........’],
[75, -8.566, ’....((.((..((((((((........)))).))))..)).))............’],
[75, -8.584, ’............(((.((((((..((((..(.....)..))))..)))))).)))’],
[75, -8.676, ’((((((..(....)..)))))).............(((((.((....)).)))))’],
[75, -8.694, ’...(((.((((.....)))))))..............(((.((....)).)))..’],
[75, -8.705, ’..........(((.((((((....(((((.((....)).))))))))))).))).’]]

Bottom 10 lowest probability structures of complexity 75.0
[[75.0, -12.95, ’...(((((((.((((.(.(.((........)).)).)))).....).))))))..’],
[75.0, -13.08, ’..(((((.((....)))))))((....)).(((.(((((....)).))).)))..’],
[75.0, -13.27, ’..(((((((...(((((...((..((....))...)).).))))..))).)))).’],
[75.0, -13.29, ’.(((........(....).......((((.(((((....))).)))))).)))..’],
[75,0, -13.36, ’((((.(((.((....(((...)))....))..(((......)))..))).)))).’],
[75.0, -13.42, ’...(.((...(((.(((....(((((.......))).))...))).))).)))..’],
[75.0, -13.57, ’(..(..(((.((..((((.((....)))))).....))..)))..)..)......’],
[75.0, -13.61, ’..(((((((.(.....).)))).)))..(((((.....)).).))..........’],
[75.0, -13.80, ’.(((...((((.((((....))))..((.....))........)).)))))....’],

Com
plexity à

Frequent 

More rare
We compress dot-bracket notation

This trend holds for other systems as well
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assumption that the exponent in Eq. (4.17) is related to our approximation K̃(x) by

K(x|A) +O(1) ⇡ aK̃(x) + b (4.23)

for constants a > 0 and b. These constants account for the O(1) term, potential

idiosyncrasies of the complexity approximation K̃, and other possible factors arising

from our approximations. Hence we approximate Eq. (4.17) as

P (x) . 2�aK̃(x)�b (4.24)

Note that the constants a and b depend on the mapping, but not on x.

As we discuss in the next Section and the example maps below, the values of a

and b can often be inferred a priori using one or more of: The complexity values of all

the outputs, the number of outputs (NO), the probability of the simplest structure,

or other values.

4.5 Making predictions for P (x) in computable maps

We can often make predictions about the values of a and b (Eq. (4.24)), via various

methods. Essentially we use any piece of information about the outputs or their

probabilities that is available to estimate, bound or approximate the values of a and

b. We now describe some methods, which we apply to various maps in the next

Section of this Chapter.

4.5.1 Estimating the range of K(x|A)

We will now estimate the range of values that we expect K(x|A) to assume. We

begin with a lower bound on possible complexity values: Given A we can compute

all the inputs, and produce all NO outputs. Hence, we can describe any x 2 O by its

index 1  j  NO in the set of outputs O. Therefore

K(x|A)  log(j) +O(log(log(j))) (4.25)
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Is black line (red dashed with b=0)Simplicity Bias: 



Can simplicity bias be applied to 
supervised learning with deep 
neural networks? 



Child-programme: Neural Network

17/10/2018 NeXUaO QeWZRUNV aQd deeS OeaUQLQJ

KWWS://QeXUaOQeWZRUNVaQddeeSOeaUQLQJ.cRP/cKaS1.KWPO 4/50

LQSXWV WR WKe RXWSXW. TKe QeXURQ'V RXWSXW,  RU , LV deWeUPLQed b\
ZKeWKeU WKe ZeLJKWed VXP  LV OeVV WKaQ RU JUeaWeU WKaQ VRPe
WhreVhold YalXe. JXVW OLNe WKe ZeLJKWV, WKe WKUeVKROd LV a UeaO
QXPbeU ZKLcK LV a SaUaPeWeU Rf WKe QeXURQ. TR SXW LW LQ PRUe
SUecLVe aOJebUaLc WeUPV:

TKaW'V aOO WKeUe LV WR KRZ a SeUceSWURQ ZRUNV!

TKaW'V WKe baVLc PaWKePaWLcaO PRdeO. A Za\ \RX caQ WKLQN abRXW WKe
SeUceSWURQ LV WKaW LW'V a deYLce WKaW PaNeV decLVLRQV b\ ZeLJKLQJ XS
eYLdeQce. LeW Pe JLYe aQ e[aPSOe. IW'V QRW a YeU\ UeaOLVWLc e[aPSOe,
bXW LW'V eaV\ WR XQdeUVWaQd, aQd Ze'OO VRRQ JeW WR PRUe UeaOLVWLc
e[aPSOeV. SXSSRVe WKe ZeeNeQd LV cRPLQJ XS, aQd \RX'Ye KeaUd
WKaW WKeUe'V JRLQJ WR be a cKeeVe feVWLYaO LQ \RXU cLW\. YRX OLNe
cKeeVe, aQd aUe WU\LQJ WR decLde ZKeWKeU RU QRW WR JR WR WKe feVWLYaO.
YRX PLJKW PaNe \RXU decLVLRQ b\ ZeLJKLQJ XS WKUee facWRUV:

1. IV WKe ZeaWKeU JRRd?
2. DReV \RXU bR\fULeQd RU JLUOfULeQd ZaQW WR accRPSaQ\ \RX?
3. IV WKe feVWLYaO QeaU SXbOLc WUaQVLW? (YRX dRQ'W RZQ a caU).

We caQ UeSUeVeQW WKeVe WKUee facWRUV b\ cRUUeVSRQdLQJ bLQaU\
YaULabOeV , aQd . FRU LQVWaQce, Ze'd KaYe  Lf WKe ZeaWKeU
LV JRRd, aQd  Lf WKe ZeaWKeU LV bad. SLPLOaUO\,  Lf \RXU
bR\fULeQd RU JLUOfULeQd ZaQWV WR JR, aQd  Lf QRW. AQd VLPLOaUO\
aJaLQ fRU  aQd SXbOLc WUaQVLW.

NRZ, VXSSRVe \RX abVROXWeO\ adRUe cKeeVe, VR PXcK VR WKaW \RX'Ue
KaSS\ WR JR WR WKe feVWLYaO eYeQ Lf \RXU bR\fULeQd RU JLUOfULeQd LV
XQLQWeUeVWed aQd WKe feVWLYaO LV KaUd WR JeW WR. BXW SeUKaSV \RX
UeaOO\ ORaWKe bad ZeaWKeU, aQd WKeUe'V QR Za\ \RX'd JR WR WKe feVWLYaO
Lf WKe ZeaWKeU LV bad. YRX caQ XVe SeUceSWURQV WR PRdeO WKLV NLQd Rf
decLVLRQ-PaNLQJ. OQe Za\ WR dR WKLV LV WR cKRRVe a ZeLJKW  fRU
WKe ZeaWKeU, aQd  aQd  fRU WKe RWKeU cRQdLWLRQV. TKe
OaUJeU YaOXe Rf  LQdLcaWeV WKaW WKe ZeaWKeU PaWWeUV a ORW WR \RX,
PXcK PRUe WKaQ ZKeWKeU \RXU bR\fULeQd RU JLUOfULeQd MRLQV \RX, RU
WKe QeaUQeVV Rf SXbOLc WUaQVLW. FLQaOO\, VXSSRVe \RX cKRRVe a
WKUeVKROd Rf  fRU WKe SeUceSWURQ. WLWK WKeVe cKRLceV, WKe
SeUceSWURQ LPSOePeQWV WKe deVLUed decLVLRQ-PaNLQJ PRdeO,

w1
w2

w3

We have thus divided our problem into two parts. The 
child-programme and the education process.  

- A Turing (1950)

Neural networks are highly expressive



Universal approximation theorem for NN

B. Hanin Approximating Continuous Functions by ReLU Nets of Minimal Width. arXiv preprint arXiv:1710.11278.

Neural networks are highly expressive -

Neural networks are fundamentally function approximators.  The following theorem holds:

https://arxiv.org/abs/1710.11278


Drawing an elephant with four complex parameters
Jürgen Mayer; Khaled Khairy; Jonathon Howard; American 
Journal of Physics 78, 648-649 (2010)

With four parameters I can fit an elephant, 
and with five I can make him wiggle his trunk
-- John von Neuman  (according to Fermi) 

4 parameters

5 parameters

F. Dyson, A meeting with Enrico Fermi.
Nature. 427, 287 (2004)

Neural networks are typically highly over-parameterized:  
number of parameters >> number of data points

1923-2020



Comparison of a polynomial fit to a DNN fit (with thousands of parameters) 

Why do the DNNs not over-fit?

Neural networks are typically highly over-parameterized:  
number of parameters >> number of data points

y(x) = a0 + a1x + a2x2 + a3x3 + ……… anxn



Bias-Variance tradeoff in Machine Learning
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FIG. 4 Schematic of typical in-sample and out-of-

sample error as a function of training set size. The
typical in-sample or training error, Ein, out-of-sample or gen-
eralization error, Eout, bias, variance, and difference of errors
as a function of the number of training data points. The
schematic assumes that the number of data points is large (in
particular, the schematic does not show the initial drop in
Ein for small amounts of data), and that our model cannot
exactly fit the true function f(x).

of data points gets large, the sampling noise decreases
and the training data set becomes more representative
of the true distribution from which the data is drawn.
For this reason, in the infinite data limit, the in-sample
and out-of-sample errors must approach the same value,
which is called the “bias” of our model.

The bias represents the best our model could do if we
had an infinite amount of training data to beat down
sampling noise. The bias is a property of the kind of
functions, or model class, we are using to approximate
f(x). In general, the more complex the model class we
use, the smaller the bias. However, we do not generally
have an infinite amount of data. For this reason, to get
best predictive power it is better to minimize the out-of-
sample error, Eout, rather than the bias. As shown in
Figure 4, Eout can be naturally decomposed into a bias,
which measures how well we can hypothetically do in the
infinite data limit, and a variance, which measures the
typical errors introduced in training our model due to
sampling noise from having a finite training set.

The final quantity shown in Figure 4 is the difference
between the generalization and training error. It mea-
sures how well our in-sample error reflects the out-of-
sample error, and measures how much worse we would
do on a new data set compared to our training data. For
this reason, the difference between these errors is pre-
cisely the quantity that measures the difference between

Er
ro
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Model Complexity

O
pt

im
um

 

Bias

Variance

Eout

FIG. 5 Bias-Variance tradeoff and model complexity.

This schematic shows the typical out-of-sample error Eout as
function of the model complexity for a training dataset of fixed
size. Notice how the bias always decreases with model com-
plexity, but the variance, i.e. fluctuation in performance due
to finite size sampling effects, increases with model complex-
ity. Thus, optimal performance is achieved at intermediate
levels of model complexity.

fitting and predicting. Models with a large difference be-
tween the in-sample and out-of-sample errors are said to
“overfit” the data. One of the lessons of statistical learn-
ing theory is that it is not enough to simply minimize
the training error, because the out-of-sample error can
still be large. As we will see in our discussion of regres-
sion in Sec. VI, this insight naturally leads to the idea of
“regularization”.

The second schematic, shown in Figure 5, shows the
out-of-sample, or test, error Eout as a function of “model
complexity”. Model complexity is a very subtle idea
and defining it precisely is one of the great achieve-
ments of statistical learning theory. In many cases, model
complexity is related to the number of parameters we
are using to approximate the true function f(x)1. In
the example of polynomial regression discussed above,
higher-order polynomials are more complex than the lin-
ear model. If we consider a training dataset of a fixed
size, Eout will be a non-monotonic function of the model
complexity, and is generally minimized for models with
intermediate complexity. The underlying reason for this
is that, even though using a more complicated model
always reduces the bias, at some point the model be-
comes too complex for the amount of training data and
the generalization error becomes large due to high vari-
ance. Thus, to minimize Eout and maximize our predic-
tive power, it may be more suitable to use a more bi-

1 There are, of course, exceptions. One neat example in the context
of one-dimensional regression in given in (Friedman et al., 2001),
Figure 7.5.
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Why does this concept not work well for DNNs?



Conundrum: if DNNs are highly expressive, why 
do they pick funcHons that generalize so well?

CIFAR-10 dataset

C. Zhang et al., Understanding deep learning requires 
rethinking generalization.
arXiv:1611.03530 (2016) 
Showed that you could randomise the labels, and still easily 
train to zero training error.  

If a DNN can “memorize” a dataset, why does it pick 
functions that generalise so well? 



Supervised learning of a Boolean function with DNNs 

Send to 
hospital?

Fever? Cough? Lost 
sense of 
smell?

Body 
ache?

Recent 
travel to 
hotspot?

Over 50? Heart 
problem?

Obese? Diabetes?

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 0 1 1 1

0 1 1 1 1 1 0 0 0 0

1 1 1 1 0 0 1 0 1 1

0 1 1 0 0 0 1 0 1 1

n questions;       2n possible answers;   2!! possible Boolean functions

For n=9            29 = 512 answers;     2512 =1.34 X 10154 possible functions

(1086 elementary particles in observable universe) .

Bo
ol

ea
n 

fu
nc

tio
n

Given some examples, can we learn the rest of the function? 

Doctor’s decision table for COVID-19 



Parameter-function map for deep learning
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et al., 2017; Saito and Kato, 2017) and quantum state
tomography (Torlai et al., 2017) are among some of the
impressive achievements to reveal the potential of DNNs
to facilitate the study of quantum systems. Machine
learning techniques involving neural networks were also
used to study quantum and fault-tolerant error correc-
tion (Baireuther et al., 2017; Breuckmann and Ni, 2017;
Chamberland and Ronagh, 2018; Davaasuren et al., 2018;
Krastanov and Jiang, 2017; Maskara et al., 2018), es-
timate rates of coherent and incoherent quantum pro-
cesses (Greplova et al., 2017), to obtain spectra of 1/f -
noise in spin-qubit devices (Zhang and Wang, 2018), and
the recognition of state and charge configurations and
auto-tuning in quantum dots (Kalantre et al., 2017). In
quantum information theory, it has been shown that one
can perform gate decompositions with the help of neural
nets (Swaddle et al., 2017). In lattice quantum chromo-
dynamics, DNNs have been used to learn action param-
eters in regions of parameter space where principal com-
ponent analysis fails (Shanahan et al., 2018). Last but
not least, DNNs also found place in the study of quan-
tum control (Yang et al., 2017), and in scattering theory
to learn s-wave scattering length (Wu et al., 2018) of po-
tentials.

A. Neural Network Basics

Neural networks (also called neural nets) are neural-
inspired nonlinear models for supervised learning. As
we will see, neural nets can be viewed as natural, more
powerful extensions of supervised learning methods such
as linear and logistic regression and soft-max methods.

1. The basic building block: neurons

The basic unit of a neural net is a stylized “neu-
ron” i that takes a vector of d input features x =
(x1, x2, . . . , xd) and produces a scalar output ai(x). A
neural network consists of many such neurons stacked
into layers, with the output of one layer serving as the
input for the next (see Figure 34). The first layer in the
neural net is called the input layer, the middle layers are
often called “hidden layers”, and the final layer is called
the output layer.

The exact function ai varies depending on the type of
non-linearity used in the neural network. However, in
essentially all cases ai can be decomposed into a linear
operation that weights the relative importance of the var-
ious inputs and a non-linear transformation �i(z) which
is usually the same for all neurons. The linear trans-
formation in almost all neural networks takes the form
of a dot product with a set of neuron-specific weights
w(i) = (w(i)

1 , w(i)
2 , . . . , w(i)

d
) followed by re-centering with

input w x

linear nonlinearity

output

x1

x2

x3

w1

w2

w3

{

{
{

input
layer

hidden
layers

output
layer

B

A

. + b

FIG. 34 Basic architecture of neural networks. (A)
The basic components of a neural network are stylized neu-
rons consisting of a linear transformation that weights the
importance of various inputs, followed by a non-linear activa-
tion function. (b) Neurons are arranged into layers with the
output of one layer serving as the input to the next layer.

a neuron-specific bias b(i):

z(i) = w(i) · x + b(i) = xT · w(i), (117)

where x = (1,x) and w(i) = (b(i),w(i)). In terms of z(i)

and the non-linear function �i(z), we can write the full
input-output function as

ai(x) = �i(z
(i)), (118)

see Figure 34.
Historically in the neural network literature, common

choices of nonlinearities included step-functions (percep-
trons), sigmoids (i.e. Fermi functions), and the hyper-
bolic tangent. More recently, it has become more com-
mon to use rectified linear units (ReLUs), leaky recti-
fied linear units (leaky ReLUs), and exponential linear
units (ELUs) (see Figure 35). Different choices of non-
linearities lead to different computational and training
properties for neurons. The underlying reason for this is
that we train neural nets using gradient descent based
methods, see Sec. IV, that require us to take derivatives
of the neural input-output function with respect to the
weights w(i) and the bias b(i). Notice that the derivatives
of the aforementioned non-linearities �(z) have very dif-
ferent properties. The derivative of the perceptron is zero
everywhere except where the input is zero. This discon-
tinuous behavior makes it impossible to train perceptrons
using gradient descent. For this reason, until recently the
most popular choice of non-linearity was the tanh func-
tion or a sigmoid/Fermi function. However, this choice
of non-linearity has a major drawback. When the input
weights become large, as they often do in training, the
activation function saturates and the derivative of the
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et al., 2017; Saito and Kato, 2017) and quantum state
tomography (Torlai et al., 2017) are among some of the
impressive achievements to reveal the potential of DNNs
to facilitate the study of quantum systems. Machine
learning techniques involving neural networks were also
used to study quantum and fault-tolerant error correc-
tion (Baireuther et al., 2017; Breuckmann and Ni, 2017;
Chamberland and Ronagh, 2018; Davaasuren et al., 2018;
Krastanov and Jiang, 2017; Maskara et al., 2018), es-
timate rates of coherent and incoherent quantum pro-
cesses (Greplova et al., 2017), to obtain spectra of 1/f -
noise in spin-qubit devices (Zhang and Wang, 2018), and
the recognition of state and charge configurations and
auto-tuning in quantum dots (Kalantre et al., 2017). In
quantum information theory, it has been shown that one
can perform gate decompositions with the help of neural
nets (Swaddle et al., 2017). In lattice quantum chromo-
dynamics, DNNs have been used to learn action param-
eters in regions of parameter space where principal com-
ponent analysis fails (Shanahan et al., 2018). Last but
not least, DNNs also found place in the study of quan-
tum control (Yang et al., 2017), and in scattering theory
to learn s-wave scattering length (Wu et al., 2018) of po-
tentials.

A. Neural Network Basics

Neural networks (also called neural nets) are neural-
inspired nonlinear models for supervised learning. As
we will see, neural nets can be viewed as natural, more
powerful extensions of supervised learning methods such
as linear and logistic regression and soft-max methods.

1. The basic building block: neurons

The basic unit of a neural net is a stylized “neu-
ron” i that takes a vector of d input features x =
(x1, x2, . . . , xd) and produces a scalar output ai(x). A
neural network consists of many such neurons stacked
into layers, with the output of one layer serving as the
input for the next (see Figure 34). The first layer in the
neural net is called the input layer, the middle layers are
often called “hidden layers”, and the final layer is called
the output layer.

The exact function ai varies depending on the type of
non-linearity used in the neural network. However, in
essentially all cases ai can be decomposed into a linear
operation that weights the relative importance of the var-
ious inputs and a non-linear transformation �i(z) which
is usually the same for all neurons. The linear trans-
formation in almost all neural networks takes the form
of a dot product with a set of neuron-specific weights
w(i) = (w(i)

1 , w(i)
2 , . . . , w(i)
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FIG. 34 Basic architecture of neural networks. (A)
The basic components of a neural network are stylized neu-
rons consisting of a linear transformation that weights the
importance of various inputs, followed by a non-linear activa-
tion function. (b) Neurons are arranged into layers with the
output of one layer serving as the input to the next layer.

a neuron-specific bias b(i):

z(i) = w(i) · x + b(i) = xT · w(i), (117)

where x = (1,x) and w(i) = (b(i),w(i)). In terms of z(i)

and the non-linear function �i(z), we can write the full
input-output function as

ai(x) = �i(z
(i)), (118)

see Figure 34.
Historically in the neural network literature, common

choices of nonlinearities included step-functions (percep-
trons), sigmoids (i.e. Fermi functions), and the hyper-
bolic tangent. More recently, it has become more com-
mon to use rectified linear units (ReLUs), leaky recti-
fied linear units (leaky ReLUs), and exponential linear
units (ELUs) (see Figure 35). Different choices of non-
linearities lead to different computational and training
properties for neurons. The underlying reason for this is
that we train neural nets using gradient descent based
methods, see Sec. IV, that require us to take derivatives
of the neural input-output function with respect to the
weights w(i) and the bias b(i). Notice that the derivatives
of the aforementioned non-linearities �(z) have very dif-
ferent properties. The derivative of the perceptron is zero
everywhere except where the input is zero. This discon-
tinuous behavior makes it impossible to train perceptrons
using gradient descent. For this reason, until recently the
most popular choice of non-linearity was the tanh func-
tion or a sigmoid/Fermi function. However, this choice
of non-linearity has a major drawback. When the input
weights become large, as they often do in training, the
activation function saturates and the derivative of the
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Theorem 4.1. For a perceptron f✓ with b = 0 and weights w sampled from a distribution which is

symmetric under reflections along the coordinate axes, the probability measure P (✓ : T (f✓) = t) is

given by

P (✓ : T (f✓) = t) =

⇢
2�n

if 0  t < 2n

0 otherwise
.

Proof sketch. We consider the sampling of the normal vector w as a two-step process: we first
sample the absolute values of the elements, giving us a vector wpos with positive elements, and then
we sample the signs of the elements. Our assumption on the probability distribution implies that
each of the 2n sign assignments is equally probable, each happening with a probability 2�n. The
key of the proof is to show that for any wpos, each of the sign assignments gives a distinct value of
T (and because there are 2n possible sign assignments, for any value of T , there is exactly one sign
assignment resulting in a normal vector with that value of T ). This implies that, provided all sign
assignments of any wpos are equally likely, the distribution on T is uniform.

A consequence of Theorem 4.1 is that the average probability of the perceptron producing a partic-
ular function f with T (f) = t is given by

hP (f)it =
2�n

|Ft|
, (3)

where Ft denotes the set of Boolean functions that the perceptron can express which satisfy T (f) =
t, and h·it denotes the average (under uniform measure) over all functions f 2 Ft.

We expect |Ft| to be much smaller for more extreme values of t, as there are fewer distinct possible
functions with extreme values of t. This would imply a bias towards low entropy functions. By
way of an example, |F0| = 1 and |F1| = n (since the only Boolean functions f a perceptron can
express which satisfy T (f) = 1 have f(x) = 1 for a single one-hot x 2 {0, 1}n), implying that
hP (f)i0 = 2�n and hP (f)i1 = 2�n

/n.

Nevertheless, the probability of functions within a set Ft is unlikely to be uniform. We find that,
in contrast to the overall entropy bias, which is independent of the shape of the distribution (as
long as it satisfies the right symmetry conditions), the probability P (f) of obtaining function f

within a set Ft can depend on distribution shape. Nevertheless, for a given distribution shape, the
probabilities P (f) are independent of scale of the shape, e.g. they are independent of the variance
of the Gaussian, or the width of the uniform distribution. This is because the function is invariant
under scaling all weights by the same factor (true only in the case of no threshold bias). We will
address the probabilities of functions within a given Ft further in Section 4.3.

4.2 SIMPLICITY BIAS OF THE b = 0 PERCEPTRON

The entropy bias of Theorem 4.1 entails an overall bias towards low Boolean complexity. In Theo-
rem B.1 in Appendix B we show that the Boolean complexity of a function f is bounded by1

KBool(f) < 2⇥ n⇥min(T (f), 2n � T (f)). (4)

Using Theorem 4.1 and Equation (4), we have that the probability that a randomly initialised per-
ceptron expresses a function f of Boolean complexity k or greater is upper bounded by

P (KBool(f) � k) < 1� k ⇥ 2�n ⇥ 2

2⇥ n
= 1� k

2n ⇥ n
. (5)

Uniformly sampling functions would result in P (KBool(f) � k) ⇡ 1�2k�2n which for intermediate
k is much larger than Equation (5). Thus from entropy bias alone, we see that the perceptron is much
more likely to produce simple functions than complex functions: it has an inductive bias towards
simplicity. This derivation is complementary to the AIT arguments from simplicity bias (Dingle
et al., 2018; Valle-Pérez et al., 2018), and has the advantage that it also proves that bias exists,
whereas AIT-based simplicity bias arguments presuppose bias.

1A tighter bound is given in Theorem B.2, but this bound lacks any obvious closed form expression.
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P(f): If we randomly sample parameters θ, how likely are we to produce 
a particular function f? 
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Does simplicity bias help generalisation? 

(a) Target function LZ complexity: 38.5 (b) Target function LZ complexity: 164.5

Figure 2: Generalization error versus learned function LZ complexity, for 500 random initialization
and training sets of size 64, for a target function with (a) lower complexity and (b) higher complexity.
Generalization error is defined with respect to off-training set samples. The blue circles and blue
histograms correspond to the (7, 40, 40, 1) neural network, and the red dots and histograms to an
unbiased learner which also fits the training data perfectly. The histograms on the sides of the plots
show the frequency of generalization errors and complexities. Overlaid on the red and blue symbols
there is a black histogram depicting the density of dots (darker is higher density).

always 2n�m functions consistent with the training set. Because the number of simple functions
will typically be much less than 2n�m, for a simple enough target function, the functions consistent
with the training set will include simple and complex functions. Because of simplicity bias, the
low-complexity functions are much more likely to be considered than the high complexity ones. On
the other hand, for a complex target function, the functions consistent with the training set are all
of high complexity. Among these, the simplicity bias does not have as large an effect because there
is a smaller range of probabilities. Thus the network effectively considers a larger set of potential
functions. This difference in effective hypothesis class causes the difference in generalization. This
intuition is formalized in the next section, using PAC-Bayes Theory.

4 PAC-Bayes generalization error bounds

In order to obtain a more quantitative understanding of the generalization behaviour we observe,
we turn to PAC-Bayes theory, an extension of the probably approximately correct (PAC) learning
framework. In particular, we use Theorem 1 from the classic work by McAllester [32], which gives a
bound on the expected generalization error, when sampling the posterior over concepts. It uses the
standard learning theory terminology of concept space for a hypothesis class of Boolean functions
(called concepts), and instance for any element of the input space.
Theorem 1. (PAC-Bayes theorem [32]) For any measure P on any concept space and any measure
on a space of instances we have, for 0 < �  1, that with probability at least 1� � over the choice
of sample of m instances all measurable subsets U of the concepts such that every element of U is
consistent with the sample and with P (U) > 0 satisfies the following:

✏(U) 
ln 1

P (U) + ln 1
� + 2 lnm+ 1

m

where P (U) =
P

c2U P (c), and where ✏(U) := Ec2U ✏(c), i.e. the expected value of the general-
ization errors over concepts c in U with probability given by the posterior P (c)

P (U) . Here, ✏(c) is the
generalization error (probability of the concept c disagreeing with the target concept, when sampling
inputs).
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F.4 EFFECTS OF TARGET FUNCTION COMPLEXITY ON LEARNING FOR DIFFERENT
COMPLEXITY MEASURES

Here we show the effect of the complexity of the target function on learning, as well as other com-
plementary results. Here we compare neural network learning to random guessing, which we call
“unbiased learner”. Note that both probably have the same hypothesis class as we tested that the
neural network used here can fit random functions.

The functions in these experiments were chosen by randomly sampling parameters of the neural
network used, and so even the highest complexity ones are probably not fully random12. In fact,
when training the network on truly random functions, we obtain generalization errors equal or above
those of the unbiased learner. This is expected from the No Free Lunch theorem, which says that no
algorithm can generalize better (for off-training error) uniformly over all functions than any other
algorithm (Wolpert & Waters (1994)).

(a) Generalization error of learned functions (b) Complexity of learned functions

(c) Number of iterations to perfectly fit training set (d) Net Euclidean distance traveled in parameter space
to fit training set

Figure 13: Different learning metrics versus the LZ complexity of the target function, when learning
with a network of shape (7, 40, 40, 1). Dots represent the means, while the shaded envelope corre-
sponds to piecewise linear interpolation of the standard deviation, over 500 random initializations
and training sets.

F.5 LEMPEL-ZIV VERSUS ENTROPY

To check that the correlation between LZ complexity and generalization is not only because of
a correlation with function entropy (which is just a measure of the fraction of inputs mapping to

12The fact that non-random strings can have maximum LZ complexity is a consequence of LZ complexity
being a less powerful complexity measure than Kolmogorov complexity, see e.g. Estevez-Rams et al. (2013).
The fact that neural networks do well for non-random functions, even if they have maximum LZ, suggests that
their simplicity bias captures a notion of complexity stronger than LZ.

27

DNN works much better than random learner

DNN works well on simple functions,
but less well on complex functions

Trained on 64 of 128 possible functions.



Problem; DNNs are not trained by randomly sampling parameters

DNNs are trained using Stochastic gradient 
descent (SGD)  on a loss function.
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Bayesian picture of bias for training set S
wish to infer (i.e. no noise), at some points, then we need to use a 0-1 likelihood P (S|f), which just
indicates whether the data is consistent with the function. Formally, if S = {(xi, yi)}mi=1 corresponds
to the set of training pairs, then we let

P (S|f) =
⇢
1 if 8i, f(xi) = yi

0 otherwise .

Note that this quantity is technically P (S|f ; {xi}), but we denote it as P (S|f) to simplify notation.
We will use a similar convention throughout, whereby the input points are (implicitly) conditioned
over. Bayesian inference then corresponds to inferring a function according to Bayes rule

P (f |S) = P (S|f)P (f)

P (S)
, (5)

also called the Bayesian posterior. P (S) is also called the marginal likelihood or Bayesian evidence,
and it is the total probability of all functions compatible with the training set. For a fixed training set,
all the variation in P (f |S) among f consistent with S comes from the prior P (f) of the untrained
network since P (S) is constant. Thus a bias in the prior is essentially translated over to the posterior.

For such an algorithm, the PAC-Bayes theorem [81, 23], roughly states that the generalisation error ✏
is bounded, with probability 1� � as

✏ . � logP (S)� log (�)

m
,

where m is the size of the training set. In [23], the authors applied the bound to DNNS, calculating
P (S) by approximating the output of randomly sampling the DNN parameters with a Gaussian
process. The bound was shown to provide relatively tight predictions for optimiser-trained DNNs
for a FCN and CNNs on MNIST, Fashion-MNIST and CIFAR-10. Moreover, the bound reproduced
trends such as the increase in the generalisation error upon an increased fraction of randomised labels.

We note that the bound is only rigorously proven for DNNs trained in an exact Bayesian fashion,
i.e. by using the distribution over P (f) obtained by randomly sampling parameters, and performing
a Bayesian update as described in Equation (5) to obtain the posterior P (f |S). So its success in
reproducing behaviour of SGD-trained DNNs would be surprising if the optimiser itself was an
important source of implicit bias. The authors of [23] conjecture that because of the huge bias in the
parameter-function map, relatively small deviations of the optimisation algorithm from Bayesian
sampling do not play a big role in determining which functions the algorithm finds. This would
explain why the PAC-Bayes bounds work so well for optimiser-trained DNN models.

To recap, there are really two distinct hypotheses put forward in [23, 24]. The first, inspired by AIT
and in particular by Eq. (4), is that the parameter-function map is exponentially biased towards simple
functions, together with the principle that such a bias promotes better generalisation. The second,
inspired by the good performance of the PAC-Bayes bound in describing the generalisation behaviour
of DNNs trained by SGD, is that the parameter-function map is the primary source of their inductive
bias, and that any regularisation due to the optimiser or loss function are second-order effects (i.e.
coming from a relatively small deviations from the ideal Bayesian behaviour).

Our current paper is primarily about testing this second hypothesis in more detail, by studying
how similar PSGD(f |S) and PB(f |S) are. At the same time, the application of hypothesis 2 to
understanding generalisation depends on strong bias, for which hypothesis 1 makes a specific
proposal.

The stream of work empirically studying the neural network GPs (NNGPs) is also relevant in the
context of question 1 [29, 30? ]. Remarkably, these NNGPs, which are equivalent to Bayesian
inference on infinite-width DNNs, exhibit fairly similar generalisation performance to their SGD
trained finite-width DNN counterparts. This correspondence tells us several things which are useful to
answer question 1. Firstly, that it’s probably sufficient to study the infinite-width limit, and the answer
shouldn’t depend too strongly on the network size or parameter count. Secondly, that Bayesian
inference is probably enough to answer question 1, and the answer shouldn’t depend too strongly on
the training method used.

In this context an interesting development is the introduction of the Neural Tangent Kernel (NTK) by
Jacot et al. [33] which approximates the dynamics of an infinite width DNN with parameters that
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The application to DNNs was first shown in [23]. We note that the input-output map of interest is not
the map from inputs to DNN outputs, but rather the map from the network parameters to the function
f it produces on inputs X which was described in the main text in Definition 2.1. The prediction of
Eq. 4 for a DNN with parameters sampled randomly (from, for example, truncated i.i.d. Gaussians) is
that, if the map is sufficiently biased, then the probability of the DNN producing a function f on input
data xn

i=0 drops exponentially with increasing complexity of the function f . Note that technically we
should write f as f |X to indicate the dependence of the function modelled by the DNN on the inputs
X . We also note that the bound of Eq. 4 on its own does not force a map to be biased. It still holds
for a uniform distribution. But if the map is biased, then it will be biased according to Eq. 4.

In [23] it was shown empirically that this very general prediction held for the P (f) of a number of
different DNNs. This was done via direct sampling of the parameters of a small DNN on Boolean
inputs. NNGP calculations also showed a strong bias in more complex systems. In [24] some exact
results were proven for simplified networks, that were also consistent with the bound of Equation (4).
In particular, they proved that for a perceptron with no bias, upon randomly sampling the parameters
(with a distribution satisfying certain weak assumptions), any value of class-imbalance was equally
likely. Because there are many fewer functions with high class imbalance (low “entropy”) than
low class imbalance, and these are also simpler, this implied a bias of P (f) towards certain simple
functions. They also proved that for infinite-width ReLU DNNs, this bias gets monotonically stronger
as the number of layers grows. A different direction was pursued in [25], who showed that, upon
randomly sampling the parameters of a ReLU DNN acting on Boolean inputs, the functions obtained
had an average sensitivity to inputs which is much lower than if randomly sampling functions.
Functions with low input sensitivity are also simple, thus proving another form of simplicity bias
present in these systems.

On the other hand, in a recent paper [66], it was shown that for DNNs with activation functions such
as Erf and Tanh, the bias starts to disappear as the system enters the “chaotic regmie”, which happens
for weight variances above a certain threshold, as the depth grows [67] (note that ReLU networks
don’t have such a chaotic regime). While these hyperparameters are not typically used for DNNs,
they do show that there exist regimes where there is no simplicity bias. Note that the Levin bound
still holds, but P (f) is simply approaching a uniform distribution, and the bound becomes loose for
small complexity. These results are also interesting because, if the bias becomes weaker, then it may
also be the case that the correlation between PB(f |S) and PSGD(f |S) starts to disappear.

Several of these works use an important recent extensions of Neal’s seminal proof [68, 69] – that a
single-layer DNN with random i.i.d. weights is equivalent to a Gaussian process (GP) [70] in the
infinite width limit – to multiple layers and architectures [29, 30, 31, 71, 72].

A bias towards simplicity does not automatically imply good generalisation. Instead certain key
hypotheses are needed about the data, in particular that it is described by functions that are simple (in
a similar sense than the inductive bias). The assumption that a more parsimonious hypothesis is more
likely to be true has been influential since antiquity and is often articulated by invoking Occam’s
razor. However, the fundamental justification for this heuristic is disputed [73]. For the machine
learning literature see e.g. [74, 75, 76, 77]. For links between the razor and AIT/Solomonoff relevant
to Eq. (4), see e.g. [78, 79] for a spirited discussion.

Studies that imply that the data is somehow “simple” include an influential paper by Lin and
Tegmark [26] invoking arguments mainly from statistical mechanics to argue that deep learning
works well because the laws of physics typically select for function classes that are “mathematically
simple”, and so easy to learn. For the much used MNIST data set, Spigler et al. [28] show that while
the data is embedded in a 282 = 784 dimensional manifold, it has a much lower effective dimension
deff = 15. Individual numbers have effective dimensions that are even lower, ranging from 7 to
13 [80]. So the functions that fit MNIST data are much simpler than those that fit random data [27].

A.3 Bayesian formulation of the relation between bias of untrained networks and trained
networks

The effect of the bias in P (f) on a network conditioned on a training set S can be formalised in
a Bayesian framework. To apply Bayesian inference for supervised learning (or function approx-
imation), we need to begin with a prior over functions, which in this case is simply P (f). If our
‘observation’, that is the training set S, corresponds to the exact values of the function which we
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Prior over functions 

If we wish to infer (i.e. no noise) at some points, then we need a 0-1 likelihood on training data   

wish to infer (i.e. no noise), at some points, then we need to use a 0-1 likelihood P (S|f), which just
indicates whether the data is consistent with the function. Formally, if S = {(xi, yi)}mi=1 corresponds
to the set of training pairs, then we let

P (S|f) =
⇢
1 if 8i, f(xi) = yi

0 otherwise .

Note that this quantity is technically P (S|f ; {xi}), but we denote it as P (S|f) to simplify notation.
We will use a similar convention throughout, whereby the input points are (implicitly) conditioned
over. Bayesian inference then corresponds to inferring a function according to Bayes rule

P (f |S) = P (S|f)P (f)

P (S)
, (5)

also called the Bayesian posterior. P (S) is also called the marginal likelihood or Bayesian evidence,
and it is the total probability of all functions compatible with the training set. For a fixed training set,
all the variation in P (f |S) among f consistent with S comes from the prior P (f) of the untrained
network since P (S) is constant. Thus a bias in the prior is essentially translated over to the posterior.

For such an algorithm, the PAC-Bayes theorem [81, 23], roughly states that the generalisation error ✏
is bounded, with probability 1� � as

✏ . � logP (S)� log (�)

m
,

where m is the size of the training set. In [23], the authors applied the bound to DNNS, calculating
P (S) by approximating the output of randomly sampling the DNN parameters with a Gaussian
process. The bound was shown to provide relatively tight predictions for optimiser-trained DNNs
for a FCN and CNNs on MNIST, Fashion-MNIST and CIFAR-10. Moreover, the bound reproduced
trends such as the increase in the generalisation error upon an increased fraction of randomised labels.

We note that the bound is only rigorously proven for DNNs trained in an exact Bayesian fashion,
i.e. by using the distribution over P (f) obtained by randomly sampling parameters, and performing
a Bayesian update as described in Equation (5) to obtain the posterior P (f |S). So its success in
reproducing behaviour of SGD-trained DNNs would be surprising if the optimiser itself was an
important source of implicit bias. The authors of [23] conjecture that because of the huge bias in the
parameter-function map, relatively small deviations of the optimisation algorithm from Bayesian
sampling do not play a big role in determining which functions the algorithm finds. This would
explain why the PAC-Bayes bounds work so well for optimiser-trained DNN models.

To recap, there are really two distinct hypotheses put forward in [23, 24]. The first, inspired by AIT
and in particular by Eq. (4), is that the parameter-function map is exponentially biased towards simple
functions, together with the principle that such a bias promotes better generalisation. The second,
inspired by the good performance of the PAC-Bayes bound in describing the generalisation behaviour
of DNNs trained by SGD, is that the parameter-function map is the primary source of their inductive
bias, and that any regularisation due to the optimiser or loss function are second-order effects (i.e.
coming from a relatively small deviations from the ideal Bayesian behaviour).

Our current paper is primarily about testing this second hypothesis in more detail, by studying
how similar PSGD(f |S) and PB(f |S) are. At the same time, the application of hypothesis 2 to
understanding generalisation depends on strong bias, for which hypothesis 1 makes a specific
proposal.

The stream of work empirically studying the neural network GPs (NNGPs) is also relevant in the
context of question 1 [29, 30? ]. Remarkably, these NNGPs, which are equivalent to Bayesian
inference on infinite-width DNNs, exhibit fairly similar generalisation performance to their SGD
trained finite-width DNN counterparts. This correspondence tells us several things which are useful to
answer question 1. Firstly, that it’s probably sufficient to study the infinite-width limit, and the answer
shouldn’t depend too strongly on the network size or parameter count. Secondly, that Bayesian
inference is probably enough to answer question 1, and the answer shouldn’t depend too strongly on
the training method used.

In this context an interesting development is the introduction of the Neural Tangent Kernel (NTK) by
Jacot et al. [33] which approximates the dynamics of an infinite width DNN with parameters that
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Posterior follows from Bayes rule

regime as follows: Given that DNNs can memorise randomly labelled image datasets, which leads to
poor generalisation, why do they behave so differently on correctly labelled datasets and select for
functions that generalise well? The solution to this conundrum must be that SGD trained DNNs have
an inductive bias towards functions that generalise well (on structured data).

The possibility that SGD is not just good for optimisation, but is also a key source of inductive bias
has generated an extensive literature. One major theme concerns the effect of SGD on the flatness of
the minima found, typically expressed in terms of eigenvalues of a local Hessian or related measures.
A link between better generalisation and flatter minima has been widely reported [8, 9, 10, 11, 12, 13]
(but see also [14]). A well-known result [9] is that DNNs trained with SGD find "flatter" minima for
smaller batch sizes, and also generalise better than identical models trained with large batch SGD
(by up to ⇠ 5%). Nevertheless, the overall differences between SGD and full-batch gradient descent
(GD) are still relatively small (see e.g. [11]). Moreover these batch-size effects can disappear when
the learning rate is also adjusted [15, 16, 17].

Direct theoretical work on SGD has also generated a large and sophisticated literature. For example,
in [18] it was demonstrated that SGD finds the max-margin solution in unregularised logistic regres-
sion, whilst it was shown in [19] that overparameterised DNNs trained with SGD avoid over-fitting
on linearly separable data. Recently, [20] proved agnostic generalization bounds of SGD-trained
neural networks. While an impressive theoretical achievement, no empirical test of the tightness of
the bounds is performed. Other recent work [21] suggests that gradient descent performs a hidden
regularisation in normalised weights, but a different analysis suggests that such implicit regularisation
may be very hard to prove in a more general setting for SGD [22]. Overall, while SGD and its related
algorithms are excellent optimisers, there is no consensus on what inductive bias SGD provides for
DNNs. (For further discussion of this SGD related literature see Appendix A).

An alternative approach is to consider the inductive properties of untrained DNNs. Recent theoretical
and empirical work [23, 24, 25] suggests that the probability P (f) that an untrained DNN outputs
a function f upon random sampling of its parameters (typically the weights and biases) is strongly
biased towards “simple” functions with low Kolmogorov complexity (see also Appendix A). A widely
held assumption is that such simple hypotheses will generalise well – think Occam’s razor. Indeed,
many processes modelled by DNNs are simple [26, 27, 28]. If the inductive bias towards simplicity
is preserved throughout training, then this could help explain the DNNs generalisation conundrum.

The effect of bias in an untrained DNN on training can be analysed within a Bayesian inference
framework with P (f) as a prior. Consider supervised learning with training data S corresponding
to the exact values of the function which we wish to infer (i.e. no noise). This corresponds to a
0-1 likelihood P (S|f), indicating whether the data is consistent with the function. Formally, if
S = {(xi, yi)}mi=1 corresponds to the set of training pairs, then P (S|f) = 1 if 8i, f(xi) = yi and 0
otherwise. The posterior probability PB(f |S) follows from Bayes rule:

PB(f |S) =
P (S|f)P (f)

P (S)
. (1)

where, for discrete functions, the marginal likelihood P (S) =
P

f
P (S|f)P (f) =

P
f2C(S) P (f),

with C(S) the set of all functions compatible with the training set. For C(S), that same set of
functions, the posterior probability PB(f |S) = P (f)/P (S). For a fixed S, P (S) is constant, and so
all the bias in PB(f |S) is translated over from the prior P (f).1

We can also calculate the probability PSGD(f |S) that a DNN trained with SGD to zero error on
S, converges on function f . The main question we will explore in this paper is: How similar is
PB(f |S) to PSGD(f |S)? If the two are significantly different, then SGD may provide an important
source of inductive bias. If the two are similar over a wide range of architectures, datasets, and
optimisers, then the inductive bias is primarily determined by the prior P (f) of the untrained DNN.

1.1 Main results summary

We performed extensive sampling experiments to calculate PSGD(f |S). Functions are distinguished
by the way they classify elements on a test set E. We use the Gaussian Processes (GP) approximation
to estimate PB(f |S) for the same systems. Our main findings are:

1This holds exactly for a fixed S, but not upon further averaging over training sets (Appendix ZZ).

2

wish to infer (i.e. no noise), at some points, then we need to use a 0-1 likelihood P (S|f), which just
indicates whether the data is consistent with the function. Formally, if S = {(xi, yi)}mi=1 corresponds
to the set of training pairs, then we let

P (S|f) =
⇢
1 if 8i, f(xi) = yi

0 otherwise .

Note that this quantity is technically P (S|f ; {xi}), but we denote it as P (S|f) to simplify notation.
We will use a similar convention throughout, whereby the input points are (implicitly) conditioned
over. Bayesian inference then corresponds to inferring a function according to Bayes rule

P (f |S) = P (S|f)P (f)

P (S)
, (5)

also called the Bayesian posterior. P (S) is also called the marginal likelihood or Bayesian evidence,
and it is the total probability of all functions compatible with the training set. For a fixed training set,
all the variation in P (f |S) among f consistent with S comes from the prior P (f) of the untrained
network since P (S) is constant. Thus a bias in the prior is essentially translated over to the posterior.

For such an algorithm, the PAC-Bayes theorem [81, 23], roughly states that the generalisation error ✏
is bounded, with probability 1� � as

✏ . � logP (S)� log (�)

m
,

where m is the size of the training set. In [23], the authors applied the bound to DNNS, calculating
P (S) by approximating the output of randomly sampling the DNN parameters with a Gaussian
process. The bound was shown to provide relatively tight predictions for optimiser-trained DNNs
for a FCN and CNNs on MNIST, Fashion-MNIST and CIFAR-10. Moreover, the bound reproduced
trends such as the increase in the generalisation error upon an increased fraction of randomised labels.

We note that the bound is only rigorously proven for DNNs trained in an exact Bayesian fashion,
i.e. by using the distribution over P (f) obtained by randomly sampling parameters, and performing
a Bayesian update as described in Equation (5) to obtain the posterior P (f |S). So its success in
reproducing behaviour of SGD-trained DNNs would be surprising if the optimiser itself was an
important source of implicit bias. The authors of [23] conjecture that because of the huge bias in the
parameter-function map, relatively small deviations of the optimisation algorithm from Bayesian
sampling do not play a big role in determining which functions the algorithm finds. This would
explain why the PAC-Bayes bounds work so well for optimiser-trained DNN models.

To recap, there are really two distinct hypotheses put forward in [23, 24]. The first, inspired by AIT
and in particular by Eq. (4), is that the parameter-function map is exponentially biased towards simple
functions, together with the principle that such a bias promotes better generalisation. The second,
inspired by the good performance of the PAC-Bayes bound in describing the generalisation behaviour
of DNNs trained by SGD, is that the parameter-function map is the primary source of their inductive
bias, and that any regularisation due to the optimiser or loss function are second-order effects (i.e.
coming from a relatively small deviations from the ideal Bayesian behaviour).

Our current paper is primarily about testing this second hypothesis in more detail, by studying
how similar PSGD(f |S) and PB(f |S) are. At the same time, the application of hypothesis 2 to
understanding generalisation depends on strong bias, for which hypothesis 1 makes a specific
proposal.

The stream of work empirically studying the neural network GPs (NNGPs) is also relevant in the
context of question 1 [29, 30? ]. Remarkably, these NNGPs, which are equivalent to Bayesian
inference on infinite-width DNNs, exhibit fairly similar generalisation performance to their SGD
trained finite-width DNN counterparts. This correspondence tells us several things which are useful to
answer question 1. Firstly, that it’s probably sufficient to study the infinite-width limit, and the answer
shouldn’t depend too strongly on the network size or parameter count. Secondly, that Bayesian
inference is probably enough to answer question 1, and the answer shouldn’t depend too strongly on
the training method used.

In this context an interesting development is the introduction of the Neural Tangent Kernel (NTK) by
Jacot et al. [33] which approximates the dynamics of an infinite width DNN with parameters that
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(a) PB(f |S) v.s.PSGD(f |S) (b) PB(f |S) v.s. ✏G (c) CSR complexity v.s. ✏G for (b)

(d) f found by NNGP in (a). (e) PB(f |S) v.s.PAdagrad(f |S) (f) PB(f |S) v.s.PNTK(f |S)

(g) PB(f |S) v.s.Padam(f |S) (h) PB(f |S) v.s.Padam(f |S) (i) Corrupted data

Figure 1: The Bayesian prediction PB(f |S) correlates closely with the probability POPT(f |S)
for optimisers such as SGD, and is exponentially biased towards low-error/low-complexity
functions. (a) PB(f |S) v.s.PSGD(f |S) for a 2-layer 1024 node wide FCN on MNIST with MSE loss;
n = 106 samples. [All MNIST and Fashion MNIST data in this figure uses train/test set size of
10, 000/100. Vertical dotted blue lines denote 90% probability boundary. Solid blue lines are fit to
guide the eye, dashed grey line is x = y. ] (b) PB(f |S) v.s. ✏G for the full range of possible errors on
E. 20 random functions were taken per value of error, and the error bars are 2�. The solid line shows
average over log(PB(f |S)). The dashed line shows the weighted ⇢(✏G)PB(f |S), where ⇢(✏G) is
the number of functions with error ✏G. The small red box shows the range of probability and error
found in (a). (c) CSR complexity for functions in PSGD(f |S) from the experiments in fig (b). (d)
Functions from (a) found by the GP and SGD: 913 functions are found by both, taking up 97.70%
of the probability by SGD, and 99.96% by GP. 288 were found only by the GP and 357 functions
were found only by SGD (not shown in figure). (e) PB(f |S) v.s. PAdagrad(f |S) for FCN on MNIST
with MSE loss for n = 105 samples, and overtrained (at zero error) for a further 64 epochs after
zero error was first reached. (f) PB(f |S) v.s. PNTK(f |S) for FCN on MNIST with MSE loss for
n = 106 samples. Symbols on the y-axis correspond to functions found by the GP, but not by the
NTK. (g) PB(f |S) v.s. Padam(f |S) for a CNN with pooling & batchnorm (details in Appendix B.2)
on Fashion-MNIST with C-E loss.n = 105 samples. (h) PB(f |S) v.s. Padam(f |S) on the IMDb
movie database on a LSTM (details in Appendix B.2) for train/test 45, 000/50, n = 104 samples. (i)
PB(f |S) and ⇢(✏G)(solid)PB(f |S) v.s. ✏G (dashed), as in (b) but including label corruption c.
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SGD acts (almost) like a Bayesian sampler 

FCN on binarized MNIST – training set 10,000,  test set 10,000 – 2100 = 1030 possible functions fit the test set.

misses many functions that both SGD and the GP find. We are currently investigating this surprising
behaviour, which may arise from the infinitesimal learning rate (see also Appendix H).

Figure 1e shows that using Adagrad [36], an adaptation of SGD that varies the learning rate, and CE
loss, shows very similar behaviour to plain SGD.

We also test the correlation for other architectures and datasets (see Appendix B.2 for details of
their definitions). In Figure 1g we show PB(f |S) v.s. Padam(f |S) for a CNN with max-pooling
and batchnorm, trained on Fashion-MNIST, a more complex dataset than MNIST. Here we used
Adam [37] (another SGD variant) and CE loss instead of MSE loss for efficiency. We need the
additional expectation-propogation approximation (EP) for the NNGP (see Appendix C.1), making
the NNGP results less accurate. Nevertheless, the correlation remains very strong, supporting the
hypothesis that PB(f |S) is the primary determinant of the functions found by the optimiser. Figure 1h
shows a similarly correlation for an LSTM trained on a sentiment analysis language dataset of Internet
Movie Database (IMDB) reviews, offering a quite different type of supervised learning task from the
image classification studied so far.

More intuition can be gathered from corrupting the MNIST data, as shown in Figure 1i. The mean
log-probability hlog(PB(f |S))i v.s. ✏G curve becomes less steep with increasing corruption (for
uniform probability PB(f |S) = 2�100 ⇡ 10�30. The number of functions grows rapidly with h✏Gi
as ⇢(✏G) = M !/((M � ✏G)!✏G!), and so for a small number of low error functions to dominate, as
they do for zero corruption in Figure 1a, the bias must be strong enough to overcome the “entropic”
factor ⇢(h✏Gi). For the 20% and 50% corruption this is clearly not case, and a huge number of
functions with larger error will dominate PB(f |S) and PSGD(f |S).
For sampling efficiency, we have limited ourselves here to a relatively small test sets (typically
M = 100). We have checked that other test sets do also show close agreement of PB(f |S) and
PSGD(f |S) (see e.g. Appendix F.2). For larger test PSGD(f |S) quickly becomes impossible to directly
measure empirically, (doubling the test set roughly means squaring the number of samples) but a
larger set can be seen as the concatenation of smaller sets. If we assume that these are approximately
i.d.d., then we can estimate the highest probabilities from products of PSGD(f |S) on the smaller sets.

Figure 2 illustrates the effect of changing hyperparameters on the correlation between PB(f |S)
and pOPT (f |S). Firstly, in Figure 2a we show results for the RMSprop optimiser (which inspired
Adam). It has the best generalisation performance of all the optimisers used for the 2 layer FCN on
MNIST (h✏Gi = 1.07). Comparing to other optimisers in this figure, we observe that the improved
performance arises due to second order deviations from PB(f |S), specifically larger probabilities for
the most frequent 1 error function and the zero-error function. Note also the similarity to Adam with
smaller batch size of 32. This performance doesn’t mean that RMSprop is in general superior to the
other SGD variants for FCNs on MNIST. For that we would need to also average over test and training
sets. Nevertheless, if one were attempting such a study, then analysing the full spectrum of function
probabilities, rather than just h✏Gi, could lead to new insights regarding what these algorithms are
doing.

Another effect we studied was inspired by [9] who showed that smaller batch sizes could lead to
better generalisation. In Figure 2 (b)-(d) we observe this same effect, which is now reflected in the
more finely grained spectrum of function probabilities. We also illustrate in Figure 2 (e) that, as
shown in [15, 16, 17], speeding up the learning rate for a fixed batch size can mimic the improvement
in h✏Gi for smaller batches, and to a lesser extend leads to a similar probability spectrum.

Optimising hyperparameters, which lead to second-order deviations from PB(f |S), typically lead
to smaller overall improvements than improvements in architecture, which change the parameter-
function map, and may therefore affect PB(f |S). In Figure 3 we demonstrate how increasing the
number of layers in an FCN leads to better performance. hmm, GP-EP causes a problem here when
comparing We also compare a CNNs with and without max-pooling. Max-pooling was designed to
improve the inductive bias of a CNN for classification, and as can be seen in the figure, max-pooling
noticeably increases the probability that the zero-error function is found.

5 Heuristic arguments for the correlation between PB(f |S) and PSGD(f |S)

At first sight it seems quite surprising that SGD, which follows gradients down a complex loss-
landscape, should converge on a function f with a probability anything like the Bayesian posterior
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(a) PB(f |S) v.s.PRMSprop(f |S) (b) Adam, batch size=128 (c) As (b) but batch size=32

(d) As (b) but batch size=512 (e) As (d) but faster learning rate (f) as (b) but with overtraining

Figure 2: Effects of hyperparameter changes: All examples are for a 2-layer 1024 node FCN
trained on MNIST with CE loss. (a) shows RMSprop which for batch size = 128 achieves an error on
E of h✏Gi = 1.02. The rest of the figures compare PB(f |S) to Adam with different hyperparameters.
(b) is for batch size= 128, (h✏Gi = 2.2); (c) is for smaller batch size = 32 (h✏Gi = 1.13); (d) is for
larger batch size = 512 (h✏Gi = 2.67); (e) shows Adam with large batches (size 512) and fast learning
rate (4x the others) (h✏Gi = 2.14); compare to (b). (f) Shows the effect of overtraining for 64 epochs
for batch size 128 (h✏Gi = 1.73);

(a) FCN with 5 layers (b) vanilla CNN (c) CNN with pooling

Figure 3: Effects of architecture changes: (a) Increasing the number of layers increases the
probability of the lowest error functions for PB(f |S) and Padam(f |S) trained on 105 samples when
compared to 2-layer FCN in Figure 2b. actually it doesn’t for PB - EP error? Figs (b) and (c) show
binarised FashionMNIST trained on CNNs; Max-pooling signigicantly increases the probability of
the zero error function for PB(f |S) and Padam(f |S), as expected. When compared to XX the effect
of batchnorm is relatvely small here.
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Figure 2: Effects of hyperparameter changes: All examples are for a 2-layer 1024 node FCN
trained on MNIST with CE loss. (a) shows RMSprop which for batch size = 128 achieves an error on
E of h✏Gi = 1.02. The rest of the figures compare PB(f |S) to Adam with different hyperparameters.
(b) is for batch size= 128, (h✏Gi = 2.2); (c) is for smaller batch size = 32 (h✏Gi = 1.13); (d) is for
larger batch size = 512 (h✏Gi = 2.67); (e) shows Adam with large batches (size 512) and fast learning
rate (4x the others) (h✏Gi = 2.14); compare to (b). (f) Shows the effect of overtraining for 64 epochs
for batch size 128 (h✏Gi = 1.73);

(a) FCN with 5 layers (b) vanilla CNN (c) CNN with pooling

Figure 3: Effects of architecture changes: (a) Increasing the number of layers increases the
probability of the lowest error functions for PB(f |S) and Padam(f |S) trained on 105 samples when
compared to 2-layer FCN in Figure 2b. actually it doesn’t for PB - EP error? Figs (b) and (c) show
binarised FashionMNIST trained on CNNs; Max-pooling signigicantly increases the probability of
the zero error function for PB(f |S) and Padam(f |S), as expected. When compared to XX the effect
of batchnorm is relatvely small here.
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Training set size dependence

(a) Experiment 1. 1000 training examples.
h✏Gi = 6.65%

(b) Experiment 3. 1000 training examples

(c) Experiment 1. 5000 training examples.
h✏Gi = 3.33%

(d) Experiment 3. 5000 training examples

(e) Experiment 1. 10000 training examples.
h✏Gi = 2.20%

(f) Experiment 3. 10000 training examples.
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(g) Experiment 1. 20000 training examples.
h✏Gi = 0.89% (h) Experiment 3. 20000 training examples

Figure 30: [Testing training set size] In this figure, we use the same parameters as in Definition B.1,
but with different amounts of training data. Note that the scales on the axes are the same, but the
limits are different. The functions to the right of the blue dotted lines make up 90% of the total
probability. Clearly the functions with good generalisation appear with higher probability in PB(f |S)
with increased training set size – evidence that the GP/EP approximation may be qualitatively correct
(at least in some situations). We show a subset of the same experiments but with MSE loss in
Figure 31.
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F.2 Test set dependence

(a) Generalisation error: 2.20%. (b) Generalisation error: 2.62%

Figure 18: This figure shows the result of Experiment 1 with parameters from Definition B.1 on two
distinct test sets, each of size 100. This is to test how dependent the results are on the test set used.

F.3 Boolean Functions

In this section we consider a much simpler system, with a smaller input space, and thus a much
smaller space of functions. This will allow us to approximate Bayesian inference in the case of
0-1 likelihood (see Appendix C.1) much more accurately, via direct sampling. We use the same
DNN architecture and synthetic data studied in [23]. It consists of a two layer neural network with 7
Boolean inputs, two hidden layers of 40 ReLU-activated neurons, and a single Boolean output. The
space of functions is thus the space of Boolean functions of 7 inputs.

We perform ‘approximate Bayesian inference’ (ABI) by sampling the parameters of the neural
network i.i.d. from a Gaussian distribution with distribution parameters7

�w = �b = 1.0, evaluating
the neural network on the training set, and saving the samples for which the neural network achieves
100% training accuracy. Each of these samples corresponds to a function, sampled from the exact
Bayesian posterior. We estimate the posterior probabilities by the empirical frequencies of individual
functions (defined on all 27 = 128 inputs), after sampling the parameters 1010 times. We used a
random but fixed training set consisting of 32 out of the 128 inputs, while we used 6 different target
functions (determining the labels in training and test set) chosen to have a range of complexities8.

Representative results are shown in Figures19,20,21 (results for the other 4 functions we tested look
qualitatively similar). We empirically found that the ABI probabilities correlated and where of similar
orders of magnitude to the SGD probabilities over the whole range of Boolean functions tried. SGD
appeared consistently more biased towards the most likely functions, although it only increased their
probability by about a factor of two (a small amount relative to the whole range of probabilities,
but which can still have a significant effect on the average generalization error). We also performed
sampling using the EP approximation to the posterior with 0-1 loss, and the exact posterior using
MSE loss to directly see the effects coming from the EP approximation. We found that for some
functions (the simplest ones) GP/EP gave probabilities which were close to those found by ABI.
However, GP/EP highly understimated the probabilities for the more complex functions (which were
still rather simple, so that ABI sampling was feasible). In fact, for the more complex functions,
GP/EP didn’t find a single function more than once in the sample. This is in contrast to the GP/MSE

7Remember that, following standard convention, the actual weight variance is dividing by the number of
input neurons

8Concretely, they were chosen among functions that appeared with reasonably high frequency, in a large
sample obtained by randomly sampling the weights of the neural network, so as to ensure ABI would give
enough samples. They were chosen to have a range of values of Lempel-Ziv complexity. See [23] for the
definition of Lempel-Ziv complexity of Boolean functions
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Upshot so far:

• The probabilities that functions  are found by SGD 
is remarkably close to a Bayesian sampler.
• Exact reason not understood, but heuristically this 

must stem from large bias.  (for unbiased systems 
the correlations are very weak)
• Nice, because we can use Bayesian picture to 

understand generalisation.
• Also, we observe very strong bias  (consistent with 

simplicity bias)



Two questions in generalisation

1) Why do DNNs generalise at all 
in the overparameterised
regime?

2) Given DNNs that generalise, 
can we further fine-tune the 
hyperparameters to improve 
generalisation?



Two questions in generalisation

1) Why do DNNs generalise at all 
in the overparameterised
regime?

Can we derive generalisation 
bounds ?
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probability at least 1 � � over the choice of sample S of m instances, all distributions Q over the
concept space satisfy the following:

✏̂(Q) ln
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where ✏(Q) =
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c
Q(c)✏(c), and ✏̂(Q) =

P
c
Q(c)✏̂(c). Here, ✏(c) is the generalization error

(probability of the concept c disagreeing with the target concept, when sampling inputs according
to D), and ✏̂(c) is the empirical error (fraction of samples in S where c disagrees with the target
concept).

In the realizable case (where zero training error is achievable for any training sample of size m),
we can consider an algorithm that achieves zero training error and samples functions with a weight
proportional the prior, namely Q(c) = Q

⇤(c) = P (c)P
c2U P (c) , where U is the set of concepts consistent

with the training set. This is just the posterior distribution, when the prior is P (c) and likelihood
equals 1 if c 2 U and 0 otherwise. It also is the Q that minimizes the general PAC-Bayes bound
2 (McAllester (1999a)). In this case, the KL divergence in the bound simplifies to the marginal
likelihood (Bayesian evidence) of the data3, and the right hand side becomes an invertible function
of the error. This is shown in Corollary 1, which is just a tighter version of the original bound by
McAllester (1998) (Theorem 1) for Bayesian binary classifiers. In practice, modern DNNs are often
in the realizable case, as they are typically trained to reach 100% training accuracy.
Corollary 1. (Realizable PAC-Bayes theorem (for Bayesian classifier)) Under the same setting as
in Theorem 1, with the extra assumption that D is realizable, we have:

� ln (1� ✏(Q⇤)) 
ln 1

P (U) + ln
�
2m
�

�

m� 1

where Q
⇤(c) = P (c)P

c2U P (c) , U is the set of concepts in H consistent with the sample S, and where
P (U) =

P
c2U

P (c)

Here we interpret ✏(Q) as the expected value of the generalization error of the classifier obtained
after running a stochastic algorithm (such as SGD), where the expectation is over runs. In order to
apply the PAC-Bayes corollary(which assumes sampling according to Q

⇤), we make the following
(informal) assumption:

Stochastic gradient descent samples the zero-error region close to uniformly.

Given some distribution over parameters P̃ (✓), the distribution over functions P (c) is determined
by the parameter-function map as P (c) = P̃ (M�1(c)). If the parameter distribution is not too far
from uniform, then P (c) should be heavily biased as in Figure 1a. In Section 7, we will discuss
and show further evidence for the validity of this assumption on the training algorithm. One way to
understand the bias observed in Fig 1a is that the volumes of regions of parameter space producing
functions vary exponentially. This is likely to have a very significant effect on which functions SGD
finds. Thus, even if the parameter distributions used here do not capture the exact behavior of SGD,
the bias will probably still play an important role.

Our measured large variation in P (f) should correlate with a large variation in the basin volume V

that Wu et al. (2017) used to explain why they obtained similar results using GD and SGD for their
DNNs trained on CIFAR10.

Because the region of parameter space with zero-error may be unbounded, we will use, unless stated
otherwise, a Gaussian distribution with a sufficiently large variance4. We discuss further the effect
of the choice of variance in Appendix C.

3This can be obtained, for instance, by noticing that the KL divergence between Q and P equals the evidence
lower bound (ELBO) plus the log likelihood. As Q⇤ is the true posterior, the bound becomes an equality, and
in our case the log likelihood is zero.

4Note that in high dimensions a Gaussian distribution is very similar to a uniform distribution over a sphere.
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P(U) – Marginal likelihood we saw before.
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Here we interpret ✏(Q) as the expected value of the generalization error of the classifier obtained
after running a stochastic algorithm (such as SGD), where the expectation is over runs. In order to
apply the PAC-Bayes corollary(which assumes sampling according to Q

⇤), we make the following
(informal) assumption:

Stochastic gradient descent samples the zero-error region close to uniformly.

Given some distribution over parameters P̃ (✓), the distribution over functions P (c) is determined
by the parameter-function map as P (c) = P̃ (M�1(c)). If the parameter distribution is not too far
from uniform, then P (c) should be heavily biased as in Figure 1a. In Section 7, we will discuss
and show further evidence for the validity of this assumption on the training algorithm. One way to
understand the bias observed in Fig 1a is that the volumes of regions of parameter space producing
functions vary exponentially. This is likely to have a very significant effect on which functions SGD
finds. Thus, even if the parameter distributions used here do not capture the exact behavior of SGD,
the bias will probably still play an important role.

Our measured large variation in P (f) should correlate with a large variation in the basin volume V

that Wu et al. (2017) used to explain why they obtained similar results using GD and SGD for their
DNNs trained on CIFAR10.

Because the region of parameter space with zero-error may be unbounded, we will use, unless stated
otherwise, a Gaussian distribution with a sufficiently large variance4. We discuss further the effect
of the choice of variance in Appendix C.

3This can be obtained, for instance, by noticing that the KL divergence between Q and P equals the evidence
lower bound (ELBO) plus the log likelihood. As Q⇤ is the true posterior, the bound becomes an equality, and
in our case the log likelihood is zero.

4Note that in high dimensions a Gaussian distribution is very similar to a uniform distribution over a sphere.
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(a) for a 4 hidden layers convolutional network (b) for a 1 hidden layer fully connected network

Figure 3: Mean generalization error and corresponding PAC-Bayes bound versus percentage of
label corruption, for three datasets and a training set of size 10000. Training set error is 0 in all
experiments. Note that the bounds follow the same trends as the true generalization errors. The
empirical errors are averaged over 8 initializations. The Gaussian process parameters were �w =
1.0, �b = 1.0 for the CNN and �w = 10.0, �b = 10.0 for the FC. Insets show the marginal
likelihood of the data as computed by the Gaussian process approximation (in natural log scale),
versus the label corruption.

The evidence is based on comparing SGD-trained network with a Gaussian process approximation
(Lee et al. (2017)), as well as showing that this approximation is similar to Bayesian sampling via
MCMC methods (Matthews et al. (2018)).

We performed experiments showing direct evidence that the probability with which two variants of
SGD find functions is close to the probability of obtaining the function by uniform sampling of pa-
rameters in the zero-error region. Due to computational limitations, we consider the neural network
from Section 4. We are interested in the probability of finding individual functions consistent with
the training set, by two methods:(1 Training the neural network with variants of SGD8; in particular,
advSGD and Adam (described in Appendix A) (2 Bayesian inference using the Gaussian process
corresponding to the neural network architecture. This approximates the behavior of sampling pa-
rameters close to uniformly in the zero-error region (i.i.d. Gaussian prior to be precise).

We estimated the probability of finding individual functions, averaged over training sets, for these
two methods (see Appendix D for the details), when learning a target Boolean function of LZ
complexity84.0. In Figures 4 and 8, we plot this average probability, for an SGD-like algorithm, and
for the approximate Bayesian inference. We find that there is close agreement (specially taking into
account that the EP approximation we use appears to overestimate probabilities, see Appendix B),
although with some scatter (the source of which is hard to discern, given that the SGD probabilities
have sampling error).

These results are promising evidence that SGD may behave similarly to uniform sampling of pa-
rameters (within zero-error region). However, this is still a question that needs much further work.
We discuss in Appendix C some potential evidence for SGD sometimes diverging from Bayesian
parameter sampling.

8 CONCLUSION AND FUTURE WORK

In this paper, we present an argument that we believe offers a first-order explanation of generalization
in highly overparametrized DNNs. First, PAC-Bayes shows how priors which are sufficiently biased
towards the true distribution can result in good generalization for highly expressive models, e.g. even
if there are many more parameters than data points. Second, the huge bias towards simple functions

8These methods were chosen because other methods we tried, including plain SGD, didn’t converge to zero
error in this task
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Tight PAC-Bayes bounds for scaling of error 
with training set size m (learning curves)
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of the error. This is shown in Corollary 1, which is just a tighter version of the original bound by
McAllester (1998) (Theorem 1) for Bayesian binary classifiers. In practice, modern DNNs are often
in the realizable case, as they are typically trained to reach 100% training accuracy.
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in Theorem 1, with the extra assumption that D is realizable, we have:
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Here we interpret ✏(Q) as the expected value of the generalization error of the classifier obtained
after running a stochastic algorithm (such as SGD), where the expectation is over runs. In order to
apply the PAC-Bayes corollary(which assumes sampling according to Q

⇤), we make the following
(informal) assumption:

Stochastic gradient descent samples the zero-error region close to uniformly.

Given some distribution over parameters P̃ (✓), the distribution over functions P (c) is determined
by the parameter-function map as P (c) = P̃ (M�1(c)). If the parameter distribution is not too far
from uniform, then P (c) should be heavily biased as in Figure 1a. In Section 7, we will discuss
and show further evidence for the validity of this assumption on the training algorithm. One way to
understand the bias observed in Fig 1a is that the volumes of regions of parameter space producing
functions vary exponentially. This is likely to have a very significant effect on which functions SGD
finds. Thus, even if the parameter distributions used here do not capture the exact behavior of SGD,
the bias will probably still play an important role.

Our measured large variation in P (f) should correlate with a large variation in the basin volume V

that Wu et al. (2017) used to explain why they obtained similar results using GD and SGD for their
DNNs trained on CIFAR10.

Because the region of parameter space with zero-error may be unbounded, we will use, unless stated
otherwise, a Gaussian distribution with a sufficiently large variance4. We discuss further the effect
of the choice of variance in Appendix C.

3This can be obtained, for instance, by noticing that the KL divergence between Q and P equals the evidence
lower bound (ELBO) plus the log likelihood. As Q⇤ is the true posterior, the bound becomes an equality, and
in our case the log likelihood is zero.

4Note that in high dimensions a Gaussian distribution is very similar to a uniform distribution over a sphere.
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Observed: error ~ m-α
1)  α decreases with data complexity (bad 
news for machine learning) 
2)  α appears independent of algorithm
3)  We can reproduce this scaling with PAC-
Bayes theory approach we have derived.

But, WHY this scaling? 

m-α



Bayesian predictions

Averaged over datasets
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(or just its expected value for an iid training set) we find:
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where the last step is a good approximation if ✏(f) is small (more precisely m✏(f)2 ⌧ 1, so how good the approximation
is depends in part on how large m is), since e
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so the last approximation above is really an upper bound.

Since training sets are typically large, I also expect P (Dm) to be strongly concentrated, so that P (Dm) ⇡ hP (Dm)i
is a good approximation, but this could be tested for the Boolean system.
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This normalised probability is analogous to what you are measuring with SGD in the scatter plots (e.g. Fig 10 in your
writeup). It would be exact if instead you did full Bayesian sampling over parameters.

So the first question is: Can we test Eq (5) explicitly for the Boolean system? For example, run SGD many
times, and see if the probabilities P (f |Dm

i
) for individual functions scale with P (f). This is effectively what Guillermo

has already done in the appendix of the big SGD paper, although he only has the exact Bayesian posterior via what
he calls "approximate Bayesian inference" (ABI), but we could check the P (f).

We need to think of the best way to show the data –
These calculations will likely be easier for large training sets where fewer functions give zero training error, and

where 1/P (Dm

i
) is typically quite large, so that you don’t have to average over as many functions. It may not work as

well in the chaotic regime where there are too many functions. The Boolean system is a bit strange in that you quickly
exhaust your maximum training set, so you could try different training set sizes.

Another interesting quantity is the expectation of the posterior probability upon averaging over training sets:

hP (f |Dm)i = P (f)

⌧
P (Dm

i
|f)

P (Dm

i
)

�

Dm
i

⇡ P (f) (1� ✏(f))m

hP (Dm)i = tF (f,m)P (f) ⇡ P (f)e�m✏(f)

hP (Dm)i (6)

where the first approximate step (average of the ratio is the ratio of the averages) should be good, on average, if P (Dm)
is highly concentrated, and the second approximation should be fine if if ✏(f) is small. We defined a average training
factor for function f as
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that captures how much on average training on training sets of size m affects the posterior probability beyond simply
the prior P (f). Here in the last step we have factored out the mean generalisation error for all functions ✏G, (which
depends on m). You can see that functions with ✏(f) < ✏G become more likely, and those with ✏(f) > ✏G become less
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has already done in the appendix of the big SGD paper, although he only has the exact Bayesian posterior via what
he calls "approximate Bayesian inference" (ABI), but we could check the P (f).

We need to think of the best way to show the data –
These calculations will likely be easier for large training sets where fewer functions give zero training error, and

where 1/P (Dm
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) is typically quite large, so that you don’t have to average over as many functions. It may not work as

well in the chaotic regime where there are too many functions. The Boolean system is a bit strange in that you quickly
exhaust your maximum training set, so you could try different training set sizes.

Another interesting quantity is the expectation of the posterior probability upon averaging over training sets:

hP (f |Dm)i = P (f)

⌧
P (Dm

i
|f)

P (Dm

i
)

�

Dm
i

⇡ P (f) (1� ✏(f))m

hP (Dm)i = tF (f,m)P (f) ⇡ P (f)e�m✏(f)

hP (Dm)i (6)

where the first approximate step (average of the ratio is the ratio of the averages) should be good, on average, if P (Dm)
is highly concentrated, and the second approximation should be fine if if ✏(f) is small. We defined a average training
factor for function f as

tF (f,m) =
(1� ✏(f))m

hP (Dm)i ⇡ e
�m✏(f)

hP (Dm)i =
e
�m✏G

hP (Dm)ie
�m(✏(f)�✏G) (7)

or a little better

tF (f,m) =
(1� ✏(f))m

hP (Dm)i =
(1� ✏G(m))m

hP (Dm)i

✓
1� ✏(f)� ✏G(m)

1� ✏G(m)

◆m

(8)

that captures how much on average training on training sets of size m affects the posterior probability beyond simply
the prior P (f). Here in the last step we have factored out the mean generalisation error for all functions ✏G, (which
depends on m). You can see that functions with ✏(f) < ✏G become more likely, and those with ✏(f) > ✏G become less
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towards and it is relatively easy to assign a complexity
value to each of the functions.

To explore the a priori probability distribution over
functions, we estimate the probability that a given
function is implemented by the model. This is achieved
simply by randomly initialising2 the DNN multiple times
and counting the number of occurrences of individual
functions. From these frequencies, an empirical proba-
bility P (f✓) that a function f✓ is implemented can be
computed. Note, the possible functions f✓ implemented
by the DNN are uniquely determined by the string of
128 Boolean outputs Y , one for each of the inputs X
fed into the DNN. This method of finding empirical
probabilities of Boolean functions was first implemented
by Pérez et al. (2019), where they were able to show,
by initialising with �w = 1.0 and �b = 1.0, that
there is an intrinsic bias towards certain functions. This
bias is accurately approximated by a Zipfian distribution
P (r) = (ln(No)r)�1, where r is the rank of the
function and No = 22

7 is the total number of possible
functions. Building upon this, Yang and Salman (2019)
were able to show, for the erf activation function, that
by increasing �w the level of bias lessens and departs
from Zipf’s Law.

Here we sampled for 108 times (as opposed to 104 times
in Yang and Salman (2019)) and a count was kept which
tracked the number of times a given function was imple-
mented by the Boolean model. By sampling longer, we
were able to explore a much larger region of the function
space. The functions were then sorted according to their
frequency and ranked. This was repeated for various
initialisation parameters for both tanh and ReLU non-
linearities. In Figure 5 we plot the empirical probability
P (f✓) against rank on a log-log graph for these various
initialisation parameters. Specifically, we observe that
certain functions occur with much higher probabilities
and hence we say the DNN is biased towards those
functions. The effect of altering the weight standard
deviation �w and the number of hidden layers on the
bias can also been seen.

Comparing Figure 5 to Figure 4, we see that, for the
tanh activation function, points in the ordered regime of
parameter space, where the output correlation of two
inputs is maximal, exhibit the highest level of bias.
Conversely, points in the chaotic phase, where the output
correlation coefficient is lower, show a lesser extent of
bias. Interestingly, the level of bias continues to decrease
as our initialisation parameters move further into the
chaotic regime corresponding to a further reduction
in the correlation coefficient. For results of the ReLU
activation function see Appendix B.

2Weight and bias terms are sampled i.i.d. from W l
ij ⇠

N(0,�2
w/Nl�1) and bli ⇠ N(0,�2

b ) respectively.

(a) Increasing �w decreases the bias in a simple DNN. �b =
0.2. The DNN has 2 hidden layers of 40 tanh neurons.

(b) In the chaotic regime, increasing the number of layers
decreases the bias in a simple DNN. �b = 0.2 and �w = 2.
Each hidden layer contains 40 tanh neurons.

Figure 5: Effect of (a) �w and (b) network depth on the
bias within a Boolean DNN {0, 1}7 ! {0, 1}.

To prove that this bias is in fact a simplicity bias, we also
plot the empirical probability P (f✓) of a function against
its complexity for the same 108 samples. Here, we
approximate the true complexity of a Boolean function,
following Pérez et al. (2019), using the Lempel-Ziv (LZ)
complexity measure. The LZ complexity of a binary
string x = x1...xn is given by

CLZ(x) =

(
log2(n) if x = 0n or 1n

log2(n) (x) otherwise

 (x) =
1

2
[Nw(x1...xn) +Nw(xn...x1)]

(12)

where n = |x| is the length of the string and Nw(x) is
the number of distinct patterns in the dictionary created
by the Lempel-Ziv algorithm (Lempel and Ziv (1976)).
The log2(n) is included here to ensure this version of
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parameters for which the C-map has a stable fixed point
at cab < 1 and an unstable fixed point at cab = 1.
Thus, by determining the stability of the fixed point at
cab = 1, for a given set of initialisation parameters, the
type of phases regime can be determined. The stability
of this point is classified by computing �1, which is the
derivative of the correlation coefficient clab with respect
to c

l�1
ab evaluated at cab = 1:

�1 ⌘
@c

l
ab

@c
l�1
ab

����
c=1

= �
2
w

Z
Dz

h
�

0
⇣p

q⇤z
⌘i2

. (11)

where q
⇤ = liml!1 q

l
aa. Using these equations and code

developed by Schoenholz et al. (2019)1, we reproduced
plots of the phase planes for tanh and ReLU.

(a) Tanh (b) ReLU

Figure 3: Mean field phase diagrams for tanh and ReLU
activation functions showing various phase regimes as
a function of �w and �b.

Figure 3a shows, for the tanh activation function, that
parameter space is separated into two regions - an or-
dered regime, where pairs of inputs become increasingly
correlated as they propagate, tending to a correlation of
cab = 1 and a chaotic regime, where pairs of inputs
tend to a correlation cab < 1. The boundary between
the two regimes is defined by �1 = 1 where inputs are
asymptotically correlated. See Appendix A for a full
discussion of the ReLU phase diagram.

Our first contribution is to consider the effect of ad-
justing the network depth on the correlation of inputs
for various initialisation parameters, in an effort to
consider whether network depth influences the ordered
and chaotic regimes. To achieve this, for a given number
of layers d, Equation (10) was iterated d times and then
the final correlation value of the two inputs was plotted
against the initialisation parameters, �w and network
depth d. Since we are iterating the C-map a finite
number of times, the ordered and chaotic regimes, as
defined above, are no longer explicitly defined. Instead

1https://github.com/ganguli-lab/deepchaos

the equations exhibit a form of transient chaos. We still
observe, however, a reasonably sharp drop from high
to low output correlation around the boundary between
order and chaos from Figure 3a. Figure 4 shows that
generally the correlation of sets of inputs decreases both
as �w is increased and as the depth of the network d is
increased. However, importantly, for networks initialised
with the parameters in the ordered regime, we observe
that increasing the depth of the network has no effect
on the correlation. Figure 4 provides us with a clearer
understanding of the various regions of parameter space
and a framework with which to explore the effect of
initialisation parameters �w and d on bias within DNNs.

Figure 4: Output correlation of the C-map for the tanh
activation function for different parameter initialisation.
The initial correlation value was fixed at cab;0 = 0.6.

2 Simplicity Bias in a model DNN
To assess the relationship between the correlation C-
map and implicit bias within DNNs, a untrained feed-
forward network is considered. We attempt to observe,
for a given set of input parameters, �w, �b and depth d,
(which determine the region of parameter space we are
observing), the probability distribution over all possible
functions induced via the parameter-function map M.
Following on from the work of Mingard et al. (2019) and
Pérez et al. (2019), a discrete function space is chosen
for which the inputs, X , are Boolean strings of length
7, X = {0, 1}7, and the outputs are single Boolean
characters {0, 1}. The space of all functions is therefore
F ✓ {0, 1}27 . This function space was selected since the
functions can be easily expressed and the space is small
enough that direct sampling can find the same function
multiple times. There are nevertheless 2128 ⇡ 1038

possible functions. To model functions of this nature,
a DNN was designed with an input layer of width 7 to
match the input space, Nl hidden layers of 40 neurons
each and a single Boolean output. Although this is a
fairly simple function space, when compared to common
image classification problems such as MNIST, it gives us
the freedom to allocate specific target functions to train
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Appendices
A. ReLU phase diagram

Figure 3b shows the ReLU phase diagram. As with the
tanh activation function, it is separated into two distinct
regions. Firstly, there is an ordered regime, where again
pairs of inputs tend to a correlation coefficient of cab =
1. Points exist in the ordered regime if �w <

p
2. It

is interesting to note, however, that points in the ReLU
ordered regime require exponentially more iterations of
the C-map to reach the stable fixed point compared to
the tanh non-linearity. For �w >

p
2, the iterative C-map

becomes unbounded with no fixed point. The cause of
this unbounded nature is that the derivative of the ReLU
function is a step function where for x > 0 �

0
= 1, else

�
0
= 0. Substituting this into Equation (11), we obtain

the result,

�1 =
�
2
w

2
. (13)

Since this depends only on �w, beyond �w =
p
2, the

correlation coefficient will grow indefinitely. Physically,
however, this cannot happen as the correlation coeffi-
cient cannot be greater than 1. This implies, at some
point, the mean-field approximation breaks down. Note
that, since �1 does not depend on �b, altering �b has no
effect on the phase region.

B. Probability rank plots for ReLU

In the case of the ReLU non-linearity, when plotting em-
pirical probability P (f✓) vs rank, the bias towards cer-
tain functions is not found to diminish significantly for
any parameter initialisation. In Figure 12a we observe,
for the highest probability functions, a slight decrease
in the empirical probability P (f✓) of around a factor of
2 between points in the ordered regime and points in
the ”unbounded” regime. Moreover, when altering the
depth of the network, the bias towards the most common
functions actually becomes monotonically stronger as
the number of hidden layers is increased. This is in
accordance with results found in Mingard et al. (2019).
However, we observe for most other functions that the
probability slightly decreases as the number of hidden
layers is increased. Finally, it is observed that the bias
is actually stronger than when using the tanh activation
function. Comparing the empirical probability of the
most common functions for both tanh and ReLU in the
ordered regime, we see that with ReLU they are found
roughly twice as often as in tanh.

(a) Increasing �w has no significant effect on the bias in a
simple ReLU DNN. �b = 0.2. The DNN has 2 hidden layers
each containing 40 ReLU neurons.

(b) In the chaotic regime, increasing the number of hidden
layers has no significant effect on the bias in a simple DNN.
�b = 0.2 and �w = 2. Each hidden layer contains 40 ReLU
neurons.

Figure 12: Effect of (a) �w and (b) network depth on the
bias within a Boolean neural network {0, 1}7 ! {0, 1}
with ReLU non-linearity.

C. Chaos destroys simplicity bias
Here, we present an argument as to why the parameter-
function map for Boolean functions is biased in the
ordered regime and why this bias diminishes in the
chaotic regime. In the ordered regime, in the limit of
large Nl, we see that under the mean-field formalism the
correlation coefficient cab tends to 1. However, Figure 4
shows that even networks with considerably fewer layers
still exhibit large output correlation coefficients. Thus,
randomly chosen inputs X will have highly correlated
outputs Y when fed into networks initialised in the or-
dered regime. In the case of the Boolean system, highly
correlated outputs lead to functions whose Boolean
representation, as a string of 128 output Boolean char-
acters, contain a large proportion of either 0’s or 1’s.
Mathematically, these functions have low entropy, where
the entropy H(f) of a Boolean function f is given by
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Increasing chaos decreases bias Henry Rees



Bayesian Approach

Target Function: 0000010100010000000010000001000000110000…

Test function:              0000010100000000000010001001000000110000…

(1 – ε(f)) = 1 – 2/128 = 0.984…

Henry Rees



Bayesian Approach -
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Experiments with SGD

• Train on a Specific Target Function with training 
set of size 64

• Calculate the complexity and Generalisation 
Error of function implemented by model

• Repeat many times – randomising the examples 
in the training set each time.
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Comparison of SGD to Bayesian
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Conclusions
• Deep learning may work because they have a natural 

bias towards simple functions (Occam’s razor)
• We show evidence that SGD behaves like a Bayesian 

optimiser
• PAC-Bayes provides tight bounds
• A Bayesian approach can help explain how 

generalisation works
• Work done by Guillermo Valle Perez, Chris Mingard, 

Joar Skalse, Henry Rees and more 

THANK YOU


