
String Data and Machine Learning

Andre Lukas

University of Oxford

Physics meets ML, July 2020

 based on: 1407.4787, 1808.09992, 1906.08730, 1906.08769, 2003.13339

in collaboration with: Lara Anderson, Callum Brodie, Andrei Constantin, Rehan Deen,

 James Gray, Yang-Hui He, Seung-Joo Lee, Eran Palti

Outline

• Conclusion

• Can ML help reveal mathematical structures?

Example: Learning line bundle cohomology

• Can ML help with the large amount of string data?

Example: Learning string theory standard models

• First steps into RL

• Introduction and motivation

• String theory basics

Introduction and Motivation

• Machine learning provides a set of “large-data” techniques

• String theory leads to very large data sets
(latest estimate: solutions to string theory)10272000

• Data is ``mathematical”, often given in terms of
integer-valued tensors

• Different from usual data such as pictures, videos

Why string theory and ML?

(W. Taylor, Y. Wang, arXiv:1510.04978)

So two basic questions:

• Can ML help reveal mathematical structures within string theory?

 (Can it be more than a ``black box”?)

Example: Learning line bundle cohomology
(C. Brodie, A. Constantin, R. Deen, AL, arXiv:1906.08769)

• Can ML help sort through the large amount of string data?

Example: Learning string theory standard models
(R. Deen, Y.-H. He, S.-J. Lee, AL, arXiv:2003.13339)

String Theory Basics

Closen and open strings

• open string closed string

• One free constant: string tension T =
1

2⇡↵0

• Consistent in 10 (or 11) space-time dimensions

• spectrum: ↵0m2 = n 2 N

• massless modes contain: graviton (closed string)
 gauge fields (open string)

(n = 0)

⇢
n = 0 ! observed particles
n > 0 ! superheavy

Ms =
1p
↵0

⇠ MPl ⇠ 1019GeV > MU ⇠ 1016GeV

Spectrum

Dimensions
We need to ``curl up” six (or seven) of the dimensions to make

contact with physics -> compactification

D=4 theory

D=10/11
string/Mïtheory

on d=6/7 ï dim. space X

Calabi-Yau manifold

(bi-cubic)

How does the 4d theory depend on the ``curling-up”?

topology : or ?

-> determines structure of 4d theory: forces, matter content, . . .
 (Maths: Algebraic Geometry)

shape : or ?

-> determines couplings/particle masses in 4d theory
 (Maths: Differential Geometry)

focus for this talk

Topologies for curling up, e.g in 2d:

sphere:

torus:

g = 0

g = 1

g = 2

.

.

.

In 2d topology is classified by the genus g = ``number of holes”.

only consistent choice for 2d

curling-up

More generally, in 6d, it is classified by integer data -> many choices.

The large number of string solutions mentioned

earlier counts these different topologies!

Some choices lead to a 4d theory close to the

standard model of particle physics, many others do not.

How to find the 4d theory from a given topology?

The space X carries additional structure, for example line bundles.

X

OX OX(2) · · ·

Line bundle topology is specified by integers

OX(k) = OX(k1, k2, . . . , kn)

OX(1)

Line bundles have sections:

X

L = OX(k)

section

Number of independent section is counted by cohomology.

L = OX(k) �! (h0(L), h1(L), h2(L), h3(L))

Counts #particles in 4d

A horrendous calculation

Can ML help reveal mathematical structures?

Computing line bundle cohomology

Base manifold: complex surface or (CY) three-fold X

Want to know: cohomology dimensions hq(X,OX(k))

Computations can be *very* complicated and may involve

Cech cohomology, spectral sequences, Koszul resolutions,…

Algorithmic realisations in terms of commutative algebra are

often computationally intense.

Example:

4.3 Three-fold examples

Our first three-fold example is for the bi-cubic CICY defined by the configuration matrix (2.12).
We recall that line bundles OX(k) are labelled by two-dimensional integer vectors k = (k1, k2).
We consider both the zeroth and first cohomology, using networks of size (n1, n2) = (3, 2) and
(n1, n2) = (4, 2), respectively, and a training box kmax = 15. The results for the zeroth and first
cohomology are shown in Figs. 9 and 10, respectively. Fitting polynomials and finding the equations

Figure 9: Regions in the Picard lattice for the zeroth cohomology of line bundles on the bicubic, determined from

the trained network in Fig. 4 for (n1, n2) = (3, 2) and a training box kmax = 15. The figure on the left shows the

regions obtained after step (2) of the algorithm. The figure on the right shows the “cleaned-up” regions obtained

after step (4) of the algorithm.

Figure 10: Regions in the Picard lattice for the first cohomology of line bundles on the bicubic, determined from

the trained network in Fig. 4 for (n1, n2) = (4, 2) and a training box kmax = 15. The figure on the left shows the

regions obtained after step (2) of the algorithm. The figure on the right shows the “cleaned-up” regions obtained

after step (4) of the algorithm.

for the regions directly leads to the formula for h
0 given by the second and third row of Eq. (2.13)

and to the formula for h
1 given by the second and third row of Eq. (2.14).

As for the previous K3 example, there are left-over one-dimensional regions both for the zeroth and
first cohomology, as can be seen from the right-hand-side plots in Figs. 9 and 10. Fitting polynomials
to these one-dimensional regions leads to the first rows in Eq. (2.13) and (2.14) (and their counterparts
obtained by exchanging k1 and k2). In this way, we can reproduce Eqs. (2.13) and (2.14) entirely.

Our final example is for the co-dimension two CICY in the ambient space P1
⇥ P4 defined by the

configuration matrix

X 2


P1 0 2
P4 4 1

�
. (4.8)

17

L = OX(�3, 4)

Line bundles: , integer vector with dim. L = OX(k) ! X k h1,1(X)

Simple machine learning of line bundle cohomology

also been realised with TensorFlow/Keras. Unless stated otherwise, training will be accomplished
using the ADAM optimiser [28].

In the next section we will consider standard function-learning with fully connected networks and
their application to line bundle cohomology. This section is mainly intended as a warm-up and as an
opportunity to draw attention to the various disadvantages of this approach. The subsequent sections
will be devoted to a more tailored approach to machine learning of line bundle cohomology, which is
based on the emerging mathematical structure.

3 Simple fully connected networks

In this section, we attempt function-learning of line bundle cohomology with simple one or two hidden
layer, fully-connected networks.

3.1 Network structure

The structure of the one hidden layer network is shown in Fig. 1.

RnRn
x ! Wx + b x ! �(x) x ! w · x + �Zh R

k f�(k)

Figure 1: A simple one hidden layer fully connected network for function learning of line bundle cohomology. The

hidden linear layer consists of n neurons, the output layer of a single neuron. Here, �(x) = (1 + exp(�x))�1
is the

logistic sigmoid function and ✓ = (W,b,w, �) collectively denotes all the weights and biases of the network.

The function f✓ represented by this network is explicitly given by

f✓(k) =
nX

i=1

hX

j=1

(wi�(Wijkj + bi) + �i) , �(x) =
1

1 + exp(�x)
, (3.1)

and ✓ = (W,b,w, �) collectively denotes all the weights and biases of the network. The number, n,
of neurons in the hidden layer will be chosen for each example, in view of optimising the fit. The
universal approximation theorem [29] asserts that the above series, for appropriate choices of weights
and biases, can be made to converge uniformly to any continuous function on a hypercube in Rh, as
n ! 1.

The functions under consideration are of course only defined on the discrete set Zh and there
is always a continuous function on Rh which matches all discrete values. Hence, it is, in principle,
possible to approximate line bundle cohomology on any space and within the training box to arbitrary
accuracy. In practice, this is of course limited and the continuity properties of the discrete function can
impact on the quality of the approximation. As we have already mentioned, line bundle cohomology
on manifolds with ample anti-canonical bundle is “continuous” in the sense that the polynomials
describing cohomology in each region match at the boundaries. For other cases, including for Calabi-
Yau manifolds, on the other hand, cohomology can jump across the boundaries of regions. We can
expect that these discontinuities will decrease the quality of the approximation.

For completeness, we will also consider the approximation of line bundle cohomology by fully
connected networks with two hidden layers, of the type shown in Fig. 2.

8

network:

also been realised with TensorFlow/Keras. Unless stated otherwise, training will be accomplished
using the ADAM optimiser [28].

In the next section we will consider standard function-learning with fully connected networks and
their application to line bundle cohomology. This section is mainly intended as a warm-up and as an
opportunity to draw attention to the various disadvantages of this approach. The subsequent sections
will be devoted to a more tailored approach to machine learning of line bundle cohomology, which is
based on the emerging mathematical structure.

3 Simple fully connected networks

In this section, we attempt function-learning of line bundle cohomology with simple one or two hidden
layer, fully-connected networks.

3.1 Network structure

The structure of the one hidden layer network is shown in Fig. 1.

RnRn
x ! Wx + b x ! �(x) x ! w · x + �Zh R

k f�(k)

Figure 1: A simple one hidden layer fully connected network for function learning of line bundle cohomology. The

hidden linear layer consists of n neurons, the output layer of a single neuron. Here, �(x) = (1 + exp(�x))�1
is the

logistic sigmoid function and ✓ = (W,b,w, �) collectively denotes all the weights and biases of the network.

The function f✓ represented by this network is explicitly given by

f✓(k) =
nX

i=1

hX

j=1

(wi�(Wijkj + bi) + �i) , �(x) =
1

1 + exp(�x)
, (3.1)

and ✓ = (W,b,w, �) collectively denotes all the weights and biases of the network. The number, n,
of neurons in the hidden layer will be chosen for each example, in view of optimising the fit. The
universal approximation theorem [29] asserts that the above series, for appropriate choices of weights
and biases, can be made to converge uniformly to any continuous function on a hypercube in Rh, as
n ! 1.

The functions under consideration are of course only defined on the discrete set Zh and there
is always a continuous function on Rh which matches all discrete values. Hence, it is, in principle,
possible to approximate line bundle cohomology on any space and within the training box to arbitrary
accuracy. In practice, this is of course limited and the continuity properties of the discrete function can
impact on the quality of the approximation. As we have already mentioned, line bundle cohomology
on manifolds with ample anti-canonical bundle is “continuous” in the sense that the polynomials
describing cohomology in each region match at the boundaries. For other cases, including for Calabi-
Yau manifolds, on the other hand, cohomology can jump across the boundaries of regions. We can
expect that these discontinuities will decrease the quality of the approximation.

For completeness, we will also consider the approximation of line bundle cohomology by fully
connected networks with two hidden layers, of the type shown in Fig. 2.

8

function:

(Fabian Ruehle 1706.07024)

training data: {(ki, h
q(OX(ki))} �! ✓0

predict cohomology dimensions hq(OX(k)) ' f✓0(k)

Example: line bundle cohomology on dP2

Want to learn , h0(dP2,O(k0l + k1e1 + k2e2)) k = (k0, k1, k2)

Training data: about 1000 cohomology values from a box |ki|  10

���� ���� ����

��-�

��-�

���

���

���

��
��

����	

validation

training

Number of neurons in first layer: 100

Box : net gives correct cohomology for 98% of line bundles|ki|  10

Box : this rate decreases to 73%|ki|  15

This can be repeated, with refinements, for other surfaces and

three-folds.

Advantages:

• Fast computation of cohomology dimensions from trained net

• Accurate in 90% of cases, sometimes more

Disadvantages:

• Accurate in only 90% of cases

• Fails outside the ``training box”

• Black box: offers no insight into structure of cohomology

Can we use ML to learn more about the structure of cohomology?

Formulae for line bundle cohomology

Complicated computations mask a relatively simple structure.

``Experimental Mathematics” indicates the following:

The Picard lattice splits into regions (often cones). In each region

 is a polynomial in with degree equal to the

complex dimension of .
hq(X,OX(k)) k

X

Example 1:

4.3 Three-fold examples

Our first three-fold example is for the bi-cubic CICY defined by the configuration matrix (2.12).
We recall that line bundles OX(k) are labelled by two-dimensional integer vectors k = (k1, k2).
We consider both the zeroth and first cohomology, using networks of size (n1, n2) = (3, 2) and
(n1, n2) = (4, 2), respectively, and a training box kmax = 15. The results for the zeroth and first
cohomology are shown in Figs. 9 and 10, respectively. Fitting polynomials and finding the equations

Figure 9: Regions in the Picard lattice for the zeroth cohomology of line bundles on the bicubic, determined from

the trained network in Fig. 4 for (n1, n2) = (3, 2) and a training box kmax = 15. The figure on the left shows the

regions obtained after step (2) of the algorithm. The figure on the right shows the “cleaned-up” regions obtained

after step (4) of the algorithm.

Figure 10: Regions in the Picard lattice for the first cohomology of line bundles on the bicubic, determined from

the trained network in Fig. 4 for (n1, n2) = (4, 2) and a training box kmax = 15. The figure on the left shows the

regions obtained after step (2) of the algorithm. The figure on the right shows the “cleaned-up” regions obtained

after step (4) of the algorithm.

for the regions directly leads to the formula for h
0 given by the second and third row of Eq. (2.13)

and to the formula for h
1 given by the second and third row of Eq. (2.14).

As for the previous K3 example, there are left-over one-dimensional regions both for the zeroth and
first cohomology, as can be seen from the right-hand-side plots in Figs. 9 and 10. Fitting polynomials
to these one-dimensional regions leads to the first rows in Eq. (2.13) and (2.14) (and their counterparts
obtained by exchanging k1 and k2). In this way, we can reproduce Eqs. (2.13) and (2.14) entirely.

Our final example is for the co-dimension two CICY in the ambient space P1
⇥ P4 defined by the

configuration matrix

X 2


P1 0 2
P4 4 1

�
. (4.8)

17

Line bundles O(k) on this space are labelled by a two-dimensional integer vector k = (k1, k2) and we
are interested in the zeroth cohomology. At the time this work has been carried out, the formula for
the dimension of this cohomology was not known. It has recently been found in Ref. [12].

Optimisation of a network as in Fig. 4 with (n1, n2) = (4, 2) and training box kmax = 10 produces
the regions in the plot on the left-hand-side of Fig. 11. Fitting cubics to these regions leads to the

Figure 11: Regions in the Picard lattice for the zeroth cohomology of line bundles on the CICY (4.8) determined

from the trained network in Fig. 4 for (n1, n2) = (4, 2) and a training box kmax = 10. The figure on the left shows

the regions obtained after step (2) of the algorithm. (The black dots correspond to spurious regions which are

discarded.) The figure on the right shows the “cleaned-up” regions obtained after step (4) of the algorithm.

polynomials in the first three rows of Eq. (4.9). From these polynomials we determine the exact
regions of validity which are shown in the right-hand-side plot in Fig. 11. As for the bi-cubic, there
exist two one-dimensional regions with too few points in the training box to be detected by the
network. Fitting polynomials to these left-over points then completes the formula which reads

h
0(OX(k)) =

8
>>>><

>>>>:

ind(OX(k)) k1 � �1 and k2 > 0
ind(OX(k)) + 2

3k1 �
2
3k

3
1 k1 < �1 and k1 + k2 > 0

0 k2 < 0 or k1 + k2 < 0
k1 + 1 k1 � 0 and k2 = 0
k2 + 1 k2 > 0 and k1 + k2 = 0

, (4.9)

where ind(OX(k)) = 2k1 + 14
3 k2 + 2kk1k

2
2 + 4

3k
3
2.

5 Learning the master formula for surfaces

For surfaces there is another conceivable approach to machine learning cohomology formulae which is
based on the master formula (2.4). We can attempt to set up a network which learns the irreducible,
negative self-intersection divisors C which determine the structure of this formula.

5.1 Network structure

Fig. 12 shows the structure of the network. The part of the network denoted g✓, where ✓ = (W,b = 0),
is a straightforward realisation of the master formula, that is, it converts an input divisor D into a
divisor D̃, as prescribed by Eq. (2.4). The only trainable element in this network is the linear layer
with n neurons. Its weights represent the divisors C which appear in the master formula while the
biases have been fixed to zero. (The network g✓ assumes that C

2 = �1, in order to simplify Eq. (2.4).
This assumption is indeed satisfied for del Pezzo surfaces to which we will apply the network.) Of
course, we may not know, a priori, how many divisors are required so we will have to vary the width
n of the network and choose an optimal configuration.

18

Line bundles O(k) on this space are labelled by a two-dimensional integer vector k = (k1, k2) and we
are interested in the zeroth cohomology. At the time this work has been carried out, the formula for
the dimension of this cohomology was not known. It has recently been found in Ref. [12].

Optimisation of a network as in Fig. 4 with (n1, n2) = (4, 2) and training box kmax = 10 produces
the regions in the plot on the left-hand-side of Fig. 11. Fitting cubics to these regions leads to the

Figure 11: Regions in the Picard lattice for the zeroth cohomology of line bundles on the CICY (4.8) determined

from the trained network in Fig. 4 for (n1, n2) = (4, 2) and a training box kmax = 10. The figure on the left shows

the regions obtained after step (2) of the algorithm. (The black dots correspond to spurious regions which are

discarded.) The figure on the right shows the “cleaned-up” regions obtained after step (4) of the algorithm.

polynomials in the first three rows of Eq. (4.9). From these polynomials we determine the exact
regions of validity which are shown in the right-hand-side plot in Fig. 11. As for the bi-cubic, there
exist two one-dimensional regions with too few points in the training box to be detected by the
network. Fitting polynomials to these left-over points then completes the formula which reads

h
0(OX(k)) =

8
>>>><

>>>>:

ind(OX(k)) k1 � �1 and k2 > 0
ind(OX(k)) + 2

3k1 �
2
3k

3
1 k1 < �1 and k1 + k2 > 0

0 k2 < 0 or k1 + k2 < 0
k1 + 1 k1 � 0 and k2 = 0
k2 + 1 k2 > 0 and k1 + k2 = 0

, (4.9)

where ind(OX(k)) = 2k1 + 14
3 k2 + 2kk1k

2
2 + 4

3k
3
2.

5 Learning the master formula for surfaces

For surfaces there is another conceivable approach to machine learning cohomology formulae which is
based on the master formula (2.4). We can attempt to set up a network which learns the irreducible,
negative self-intersection divisors C which determine the structure of this formula.

5.1 Network structure

Fig. 12 shows the structure of the network. The part of the network denoted g✓, where ✓ = (W,b = 0),
is a straightforward realisation of the master formula, that is, it converts an input divisor D into a
divisor D̃, as prescribed by Eq. (2.4). The only trainable element in this network is the linear layer
with n neurons. Its weights represent the divisors C which appear in the master formula while the
biases have been fixed to zero. (The network g✓ assumes that C

2 = �1, in order to simplify Eq. (2.4).
This assumption is indeed satisfied for del Pezzo surfaces to which we will apply the network.) Of
course, we may not know, a priori, how many divisors are required so we will have to vary the width
n of the network and choose an optimal configuration.

18

(Constantin, AL 1808.09992,

 Larfors, Schneider 1906.00293)

Example 2: dP1

associated to the blow-ups. The intersection form is determined by the relations

l · l = 1 , l · ei = 0 , ei · ej = ��ij . (2.6)

Line bundles are labelled by an integer vector k = (k0, k1, . . . , kr) 2 Zr+1 and are written as OdPr(k) =
OdPr(k0l + k1e1 + · · · + krer). The canonical bundle and Serre duality take the form

KdPr = �3l +
rX

i=1

ei , h
2(OdPr(k)) = h

0(OdPr(�k0 � 3, �k1 + 1, . . . , �kr + 1)) (2.7)

and, hence, del Pezzo surfaces have an ample anti-canonical bundle. The index theorem reads explic-
itly

ind(OdPr(k)) = h
0(OdPr(k))�h

1(OdPr(k))+h
2(OdPr(k)) = 1+

1

2
k0(k0+3)+

1

2

rX

i=1

ki(1�ki) . (2.8)

As discussed above, these two results can be used to determine h
1 and h

2 once h
0 is known for all

line bundles.
Line bundle cohomology dimensions on del Pezzo surfaces can be calculated by three algorithmic

methods:

• The del Pezzo surfaces dPr for r = 0, 1, 2, 3 have a toric realisation. For those cases the algorithm
of Ref. [19] which computes line bundle cohomology on toric spaces can be used.

• All del Pezzo surfaces dPr have realisations as (favourable) complete intersections in products
of projective spaces [18] so that the algorithm of Refs. [20–24] can be used.

• Ref. [25] provides an algorithm to compute line bundle cohomology dimensions on all del Pezzo
surfaces which is based on counting certain polynomials on P2.

We have used all three methods in order to obtain the required training data. We note that for
all cases we have checked the three methods agree wherever they overlap. As explained above, this
data can be used to extract analytic, piecewise quadratic formulae for cohomology dimensions by
“eyeballing”, although this process can be tedious.

As a simple example, the so-obtained formula for the zeroth cohomology of line bundles on dP1

is given by

h
0(OdP1(k0, k1)) =

8
>>>><

>>>>:

1

2
(k0 + 1)(k0 + 2) k0 � 0 , k1 � 0

1

2
(k0 + 1)(k0 + 2) +

1

2
k1(1 � k1) k1 < 0 , k0 > 0 , k0 + k1 � 0

0 otherwise

(2.9)

As is evident there are three regions R↵ is this case. In line with our general discussion, these regions
are two-dimensional and cohomology dimensions match continuously at the boundaries. The second
row corresponds to the (nef) cone where h

0 is given by the index, as comparison with Eq. (2.8)
confirms. The formula in the first row can be obtained by combining the master formula (2.4) with
Eq. (2.5) and inserting for C the single divisor with self-intersection �1, namely e1. A more detailed
discussion of these issues and further examples can be found in Ref. [15]. Our goal in Section 4 will
be to conjecture formulae such as Eq. (2.9) from machine learning.

5

OX(k), that there exist piecewise polynomial formulae for h
q(O(k)). More specifically, the Picard

group Pic(X) ⇠= Zh =
S

↵ R↵ splits into disjoint regions R↵, such that h
q(O(k)) = p↵(k) for all

k 2 R↵, where p↵ is a polynomial of degree d in the components ki of k. In Section 4 we will see how
knowledge of this basic structure facilitates machine learning of line bundle cohomology and leads to
a conjecture-generating network.

There is one more empirical observation about the structure of these formulae which is worth
mentioning in the present context. If the manifold X has an ample anti-canonical bundle �KX then
the regions R↵ have dimension h and the cohomology dimensions match “continuously” at the region
boundaries. On other hand, if �KX is not ample (in particular, if it is trivial and, hence, the space
is a Calabi-Yau manifold) there are regions R↵ of dimension h as well as of lower dimension and
cohomology dimensions can jump discontinuously at region boundaries. As we will see, these features
have implications for machine learning of cohomology dimensions.

For the case of the zeroth cohomology on surfaces, the origin of piecewise quadratic formulae has
been explained - and in many cases proven - in Refs. [14, 15]. The key is a map D ! D̃ between
divisors defined by

D̃ = D �

X

C2I
✓(�C · D) ceil

✓
C · D

C2

◆
C , (2.4)

where ✓ and ceil are the Heaviside and ceiling functions, respectively, the dot denotes the intersection
form on X and the sum runs over the set I of (irreducible) divisors with negative self-intersection. It
has been shown that for any divisor D in the e↵ective cone (that is, for any D with h

0(D) > 0) the
zeroth cohomology is unchanged under the above map, that is, h

0(D̃) = h
0(D). In addition, it can

be shown [14, 15], that for many surfaces, which include del Pezzo surfaces and Hirzebruch surfaces,
there is a vanishing theorem (Kodaira vanishing or one of its variants) which applies to D̃ and which
states that h

q(O(D̃)) = 0 for q > 0. This means from Eq. (2.3) that h
0(O(D̃)) can be computed from

the index theorem and it follows that

h
0(O(D)) = ind(D̃) . (2.5)

Since the index is always a quadric in the line bundle integers ki this explains the structure of the
cohomology formulae for h

0 and provides a practical way of deriving them by identifying the divisors
I summed over in Eq. (2.4).

For some surfaces, including some toric surfaces, it can be necessary to apply the formula (2.4)
multiple times in succession to arrive at a new divisor for which a suitable vanishing theorem applies.
In such cases, the zeroth cohomology can still be expressed as the index of another divisor, but its
relation to the original divisor becomes more complicated and amounts to iterating Eq. (2.4).

In the following, we will refer to Eq. (2.4) as the “master formula” for cohomology and Section 5
discusses how this formula can be used in the context of machine learning.

Unfortunately, at present, there are no analogous master formulae known for higher cohomologies or
for three-folds. Nevertheless, the study of examples suggests the existence of piecewise polynomial
formulae in those cases as well and we will rely on and confirm this empirical fact in some of our
machine learning applications. Let us now discuss the main classes of example manifolds X which
we will use throughout the paper.

2.2 Del Pezzo surfaces

Del Pezzo surfaces dPr, where r = 0, . . . , 8, are defined as the complex projective plane P2 blown up
in r (generic) points. (In particular, dP0 = P2 is the projective plane and, hence, somewhat trivial.)
The rank of the Picard lattice is h = h

1,1(dPr) = r + 1 and a basis of divisor classes is given by
(Di) = (l, e1, . . . , er), where l is the hyperplane class of P2 and ei are the exceptional divisor classes

4

=)

OX(k), that there exist piecewise polynomial formulae for h
q(O(k)). More specifically, the Picard

group Pic(X) ⇠= Zh =
S

↵ R↵ splits into disjoint regions R↵, such that h
q(O(k)) = p↵(k) for all

k 2 R↵, where p↵ is a polynomial of degree d in the components ki of k. In Section 4 we will see how
knowledge of this basic structure facilitates machine learning of line bundle cohomology and leads to
a conjecture-generating network.

There is one more empirical observation about the structure of these formulae which is worth
mentioning in the present context. If the manifold X has an ample anti-canonical bundle �KX then
the regions R↵ have dimension h and the cohomology dimensions match “continuously” at the region
boundaries. On other hand, if �KX is not ample (in particular, if it is trivial and, hence, the space
is a Calabi-Yau manifold) there are regions R↵ of dimension h as well as of lower dimension and
cohomology dimensions can jump discontinuously at region boundaries. As we will see, these features
have implications for machine learning of cohomology dimensions.

For the case of the zeroth cohomology on surfaces, the origin of piecewise quadratic formulae has
been explained - and in many cases proven - in Refs. [14, 15]. The key is a map D ! D̃ between
divisors defined by

D̃ = D �

X

C2I
✓(�C · D) ceil

✓
C · D

C2

◆
C , (2.4)

where ✓ and ceil are the Heaviside and ceiling functions, respectively, the dot denotes the intersection
form on X and the sum runs over the set I of (irreducible) divisors with negative self-intersection. It
has been shown that for any divisor D in the e↵ective cone (that is, for any D with h

0(D) > 0) the
zeroth cohomology is unchanged under the above map, that is, h

0(D̃) = h
0(D). In addition, it can

be shown [14, 15], that for many surfaces, which include del Pezzo surfaces and Hirzebruch surfaces,
there is a vanishing theorem (Kodaira vanishing or one of its variants) which applies to D̃ and which
states that h

q(O(D̃)) = 0 for q > 0. This means from Eq. (2.3) that h
0(O(D̃)) can be computed from

the index theorem and it follows that

h
0(O(D)) = ind(D̃) . (2.5)

Since the index is always a quadric in the line bundle integers ki this explains the structure of the
cohomology formulae for h

0 and provides a practical way of deriving them by identifying the divisors
I summed over in Eq. (2.4).

For some surfaces, including some toric surfaces, it can be necessary to apply the formula (2.4)
multiple times in succession to arrive at a new divisor for which a suitable vanishing theorem applies.
In such cases, the zeroth cohomology can still be expressed as the index of another divisor, but its
relation to the original divisor becomes more complicated and amounts to iterating Eq. (2.4).

In the following, we will refer to Eq. (2.4) as the “master formula” for cohomology and Section 5
discusses how this formula can be used in the context of machine learning.

Unfortunately, at present, there are no analogous master formulae known for higher cohomologies or
for three-folds. Nevertheless, the study of examples suggests the existence of piecewise polynomial
formulae in those cases as well and we will rely on and confirm this empirical fact in some of our
machine learning applications. Let us now discuss the main classes of example manifolds X which
we will use throughout the paper.

2.2 Del Pezzo surfaces

Del Pezzo surfaces dPr, where r = 0, . . . , 8, are defined as the complex projective plane P2 blown up
in r (generic) points. (In particular, dP0 = P2 is the projective plane and, hence, somewhat trivial.)
The rank of the Picard lattice is h = h

1,1(dPr) = r + 1 and a basis of divisor classes is given by
(Di) = (l, e1, . . . , er), where l is the hyperplane class of P2 and ei are the exceptional divisor classes

4

In many cases, there is a vanishing theorem (Kodaira or similar)

which shows that for . In such cases

OX(k), that there exist piecewise polynomial formulae for h
q(O(k)). More specifically, the Picard

group Pic(X) ⇠= Zh =
S

↵ R↵ splits into disjoint regions R↵, such that h
q(O(k)) = p↵(k) for all

k 2 R↵, where p↵ is a polynomial of degree d in the components ki of k. In Section 4 we will see how
knowledge of this basic structure facilitates machine learning of line bundle cohomology and leads to
a conjecture-generating network.

There is one more empirical observation about the structure of these formulae which is worth
mentioning in the present context. If the manifold X has an ample anti-canonical bundle �KX then
the regions R↵ have dimension h and the cohomology dimensions match “continuously” at the region
boundaries. On other hand, if �KX is not ample (in particular, if it is trivial and, hence, the space
is a Calabi-Yau manifold) there are regions R↵ of dimension h as well as of lower dimension and
cohomology dimensions can jump discontinuously at region boundaries. As we will see, these features
have implications for machine learning of cohomology dimensions.

For the case of the zeroth cohomology on surfaces, the origin of piecewise quadratic formulae has
been explained - and in many cases proven - in Refs. [14, 15]. The key is a map D ! D̃ between
divisors defined by

D̃ = D �

X

C2I
✓(�C · D) ceil

✓
C · D

C2

◆
C , (2.4)

where ✓ and ceil are the Heaviside and ceiling functions, respectively, the dot denotes the intersection
form on X and the sum runs over the set I of (irreducible) divisors with negative self-intersection. It
has been shown that for any divisor D in the e↵ective cone (that is, for any D with h

0(D) > 0) the
zeroth cohomology is unchanged under the above map, that is, h

0(D̃) = h
0(D). In addition, it can

be shown [14, 15], that for many surfaces, which include del Pezzo surfaces and Hirzebruch surfaces,
there is a vanishing theorem (Kodaira vanishing or one of its variants) which applies to D̃ and which
states that h

q(O(D̃)) = 0 for q > 0. This means from Eq. (2.3) that h
0(O(D̃)) can be computed from

the index theorem and it follows that

h
0(O(D)) = ind(D̃) . (2.5)

Since the index is always a quadric in the line bundle integers ki this explains the structure of the
cohomology formulae for h

0 and provides a practical way of deriving them by identifying the divisors
I summed over in Eq. (2.4).

For some surfaces, including some toric surfaces, it can be necessary to apply the formula (2.4)
multiple times in succession to arrive at a new divisor for which a suitable vanishing theorem applies.
In such cases, the zeroth cohomology can still be expressed as the index of another divisor, but its
relation to the original divisor becomes more complicated and amounts to iterating Eq. (2.4).

In the following, we will refer to Eq. (2.4) as the “master formula” for cohomology and Section 5
discusses how this formula can be used in the context of machine learning.

Unfortunately, at present, there are no analogous master formulae known for higher cohomologies or
for three-folds. Nevertheless, the study of examples suggests the existence of piecewise polynomial
formulae in those cases as well and we will rely on and confirm this empirical fact in some of our
machine learning applications. Let us now discuss the main classes of example manifolds X which
we will use throughout the paper.

2.2 Del Pezzo surfaces

Del Pezzo surfaces dPr, where r = 0, . . . , 8, are defined as the complex projective plane P2 blown up
in r (generic) points. (In particular, dP0 = P2 is the projective plane and, hence, somewhat trivial.)
The rank of the Picard lattice is h = h

1,1(dPr) = r + 1 and a basis of divisor classes is given by
(Di) = (l, e1, . . . , er), where l is the hyperplane class of P2 and ei are the exceptional divisor classes

4

OX(k), that there exist piecewise polynomial formulae for h
q(O(k)). More specifically, the Picard

group Pic(X) ⇠= Zh =
S

↵ R↵ splits into disjoint regions R↵, such that h
q(O(k)) = p↵(k) for all

k 2 R↵, where p↵ is a polynomial of degree d in the components ki of k. In Section 4 we will see how
knowledge of this basic structure facilitates machine learning of line bundle cohomology and leads to
a conjecture-generating network.

There is one more empirical observation about the structure of these formulae which is worth
mentioning in the present context. If the manifold X has an ample anti-canonical bundle �KX then
the regions R↵ have dimension h and the cohomology dimensions match “continuously” at the region
boundaries. On other hand, if �KX is not ample (in particular, if it is trivial and, hence, the space
is a Calabi-Yau manifold) there are regions R↵ of dimension h as well as of lower dimension and
cohomology dimensions can jump discontinuously at region boundaries. As we will see, these features
have implications for machine learning of cohomology dimensions.

For the case of the zeroth cohomology on surfaces, the origin of piecewise quadratic formulae has
been explained - and in many cases proven - in Refs. [14, 15]. The key is a map D ! D̃ between
divisors defined by

D̃ = D �

X

C2I
✓(�C · D) ceil

✓
C · D

C2

◆
C , (2.4)

where ✓ and ceil are the Heaviside and ceiling functions, respectively, the dot denotes the intersection
form on X and the sum runs over the set I of (irreducible) divisors with negative self-intersection. It
has been shown that for any divisor D in the e↵ective cone (that is, for any D with h

0(D) > 0) the
zeroth cohomology is unchanged under the above map, that is, h

0(D̃) = h
0(D). In addition, it can

be shown [14, 15], that for many surfaces, which include del Pezzo surfaces and Hirzebruch surfaces,
there is a vanishing theorem (Kodaira vanishing or one of its variants) which applies to D̃ and which
states that h

q(O(D̃)) = 0 for q > 0. This means from Eq. (2.3) that h
0(O(D̃)) can be computed from

the index theorem and it follows that

h
0(O(D)) = ind(D̃) . (2.5)

Since the index is always a quadric in the line bundle integers ki this explains the structure of the
cohomology formulae for h

0 and provides a practical way of deriving them by identifying the divisors
I summed over in Eq. (2.4).

For some surfaces, including some toric surfaces, it can be necessary to apply the formula (2.4)
multiple times in succession to arrive at a new divisor for which a suitable vanishing theorem applies.
In such cases, the zeroth cohomology can still be expressed as the index of another divisor, but its
relation to the original divisor becomes more complicated and amounts to iterating Eq. (2.4).

In the following, we will refer to Eq. (2.4) as the “master formula” for cohomology and Section 5
discusses how this formula can be used in the context of machine learning.

Unfortunately, at present, there are no analogous master formulae known for higher cohomologies or
for three-folds. Nevertheless, the study of examples suggests the existence of piecewise polynomial
formulae in those cases as well and we will rely on and confirm this empirical fact in some of our
machine learning applications. Let us now discuss the main classes of example manifolds X which
we will use throughout the paper.

2.2 Del Pezzo surfaces

Del Pezzo surfaces dPr, where r = 0, . . . , 8, are defined as the complex projective plane P2 blown up
in r (generic) points. (In particular, dP0 = P2 is the projective plane and, hence, somewhat trivial.)
The rank of the Picard lattice is h = h

1,1(dPr) = r + 1 and a basis of divisor classes is given by
(Di) = (l, e1, . . . , er), where l is the hyperplane class of P2 and ei are the exceptional divisor classes

4

OX(k), that there exist piecewise polynomial formulae for h
q(O(k)). More specifically, the Picard

group Pic(X) ⇠= Zh =
S

↵ R↵ splits into disjoint regions R↵, such that h
q(O(k)) = p↵(k) for all

k 2 R↵, where p↵ is a polynomial of degree d in the components ki of k. In Section 4 we will see how
knowledge of this basic structure facilitates machine learning of line bundle cohomology and leads to
a conjecture-generating network.

There is one more empirical observation about the structure of these formulae which is worth
mentioning in the present context. If the manifold X has an ample anti-canonical bundle �KX then
the regions R↵ have dimension h and the cohomology dimensions match “continuously” at the region
boundaries. On other hand, if �KX is not ample (in particular, if it is trivial and, hence, the space
is a Calabi-Yau manifold) there are regions R↵ of dimension h as well as of lower dimension and
cohomology dimensions can jump discontinuously at region boundaries. As we will see, these features
have implications for machine learning of cohomology dimensions.

For the case of the zeroth cohomology on surfaces, the origin of piecewise quadratic formulae has
been explained - and in many cases proven - in Refs. [14, 15]. The key is a map D ! D̃ between
divisors defined by

D̃ = D �

X

C2I
✓(�C · D) ceil

✓
C · D

C2

◆
C , (2.4)

where ✓ and ceil are the Heaviside and ceiling functions, respectively, the dot denotes the intersection
form on X and the sum runs over the set I of (irreducible) divisors with negative self-intersection. It
has been shown that for any divisor D in the e↵ective cone (that is, for any D with h

0(D) > 0) the
zeroth cohomology is unchanged under the above map, that is, h

0(D̃) = h
0(D). In addition, it can

be shown [14, 15], that for many surfaces, which include del Pezzo surfaces and Hirzebruch surfaces,
there is a vanishing theorem (Kodaira vanishing or one of its variants) which applies to D̃ and which
states that h

q(O(D̃)) = 0 for q > 0. This means from Eq. (2.3) that h
0(O(D̃)) can be computed from

the index theorem and it follows that

h
0(O(D)) = ind(D̃) . (2.5)

Since the index is always a quadric in the line bundle integers ki this explains the structure of the
cohomology formulae for h

0 and provides a practical way of deriving them by identifying the divisors
I summed over in Eq. (2.4).

For some surfaces, including some toric surfaces, it can be necessary to apply the formula (2.4)
multiple times in succession to arrive at a new divisor for which a suitable vanishing theorem applies.
In such cases, the zeroth cohomology can still be expressed as the index of another divisor, but its
relation to the original divisor becomes more complicated and amounts to iterating Eq. (2.4).

In the following, we will refer to Eq. (2.4) as the “master formula” for cohomology and Section 5
discusses how this formula can be used in the context of machine learning.

Unfortunately, at present, there are no analogous master formulae known for higher cohomologies or
for three-folds. Nevertheless, the study of examples suggests the existence of piecewise polynomial
formulae in those cases as well and we will rely on and confirm this empirical fact in some of our
machine learning applications. Let us now discuss the main classes of example manifolds X which
we will use throughout the paper.

2.2 Del Pezzo surfaces

Del Pezzo surfaces dPr, where r = 0, . . . , 8, are defined as the complex projective plane P2 blown up
in r (generic) points. (In particular, dP0 = P2 is the projective plane and, hence, somewhat trivial.)
The rank of the Picard lattice is h = h

1,1(dPr) = r + 1 and a basis of divisor classes is given by
(Di) = (l, e1, . . . , er), where l is the hyperplane class of P2 and ei are the exceptional divisor classes

4

No clear mathematical understanding for three-folds and higher yet.

Some understanding for surfaces in terms of index formula:
(Brodie, Constantin, Deen, AL 1906.08769)

(W1,b1)k (W2,b2)� �
Rn Rn1 Rn1 Rn2

Rn2

x = (ki, kikj , . . .) (W3,b3)
RN

Rn2 · R

Design a net which matches the structure of the formula:

g✓

Assume net has been trained: ! g✓0 , W30, b30

a0 ' g✓0(k) · b30 a ' g✓0(k)W30

Line bundles with similar are in the same region. This can
be used to identify regions and the polynomials.

(a0,a)

Can we use ML to conjecture cohomology formulae?
(C. Brodie, A. Constantin, R. Deen, AL, 1906.08769,

 D. Klaever, L Schlechter 1809.02547)

1) Train and identify regions:

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

k1

k2

2) Find correct cubic polynomial for each region by a fit:

yellow/green: h1(OX(k1, k2)) = �
3

2
(k1 + k2)(2 + k1k2)

blue: h1(OX(k1, k2)) = 0

2.3 Complete intersection manifolds

Our three-fold examples will be taken from the class of complete intersection (CI) manifolds in
products of projective spaces [18, 26, 27]. Underlying the construction is an ambient space A =
Pn1⇥· · ·⇥Pnm , a product of complex projective spaces. The manifold X ⇢ A is defined as the common
zero locus of homogeneous polynomials P1, . . . , PK . Their degrees of homogeneity are encoded in a
configuration matrix

X 2

2

64
Pn1 q

1
1 · · · q

1
K

...
...

...
Pnm q

m
1 · · · q

m
K

3

75
D1
...

Dm

(2.10)

Specifically, the entry q
i
a of this matrix is the degree of the polynomial Pa in the homogeneous

coordinates of the i
th projective space. The complex dimension of the space is given by d =

Pm
i=1 ni�

K and we are interested in the case of CI surfaces (d = 2) and CI three-folds (d = 3). The Di

listed after the configuration matrix are the divisor classes dual to the standard Kähler forms of the
projective space (restricted to X) and we will focus on favourable cases, where these Di span the
entire fourth homology of X. For such cases, the rank of the Picard group is h = h

1,1(X) = m

and line bundles are labelled by integer vectors k = (k1, . . . , km) 2 Zm and denoted by OX(k) =
OX(k1D1 + · · · + kmDm).

The anti-canonical bundle of such a complete intersection is given by

� KX =
mX

i=1

(ni + 1 �

KX

a=1

q
i
a)Di . (2.11)

This means, by choosing polynomial degrees, we can create CI manifolds with ample anti-canonical
bundle (such as del Pezzo surfaces), CI Calabi-Yau manifolds (CICYs) if we choose

PK
a=1 q

i
a = ni +1

for all i = 1, . . . , m, so that KX = 0, or CI manifolds with an ample canonical bundle.
Line bundle cohomology on CI manifolds can be computed using the algorithm of Refs. [20–24]

which relies on the Bott-Borel-Weil representation of cohomology on projective spaces combined with
spectral sequence methods. We expect line bundle cohomology dimensions on CI manifolds to be
described by piecewise polynomial formulae, with quadratic polynomials for CI surfaces and cubic
polynomials for CI three-folds. For the case of three-folds, this has first been shown in Ref. [11] where
several examples have been given.

As an illustration, consider the bi-cubic CICY three-fold in A = P2
⇥ P2, defined by the configu-

ration matrix

X 2


P2 3
P2 3

�
. (2.12)

Line bundles OX(k) are labelled by a two-dimensional integer vector k = (k1, k2). Since the coho-
mology dimensions are invariant under the exchange k1 $ k2 we can assume that k1  k2 without
loss of generality. Under this assumption, the analytic formulae for the zeroth and first cohomology

6

Example 1: bi-cubic , h1(X,OX(k1, k2))

3) Use these equations to find the exact regions:

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

k1

k2

4) Find equations for boundaries of regions

are [11]

h
0(OX(k)) =

8
>>>><

>>>>:

1

2
(1 + k2)(2 + k2) , k1 = 0, k2 � 0

ind(OX(k)) , k1, k2 > 0

0 otherwise

(2.13)

h
1(OX(k)) =

8
>>>><

>>>>:

1

2
(�1 + k2)(�2 + k2) , k1 = 0, k2 > 0

�ind(OX(k)) , k1 < 0, k2 > �k1

0 otherwise ,

(2.14)

with the index given by ind(OX(k)) = 3
2(k1+k2)(2+k1k2). In line with our general discussion, we have

two-dimensional regions as well as one-dimensional ones, the latter along the positive coordinate axis.
Moreover, it is evident from the above formulae that cohomology dimensions jump discontinuously
across boundaries. As for surfaces, we would like to be able to conjecture formulae such as the above
from machine learning.

2.4 Set-up for machine learning

In summary, we are interested in exploring machine learning of line bundle cohomology on manifolds
X with complex dimensions d = 2, 3, of the type introduced above. Line bundles on these manifolds
are labelled by integer vectors k 2 Zh with components ki and are denoted OX(k). The cohomology
dimensions h

q(OX(k)) 2 Z�0, where q = 0, . . . , d, can be explicitly computed using the various
algorithmic methods outlined above. This leads to our training/validation data which is of the form

Zh
3 k �! h

q(OX(k)) 2 Z�0
. (2.15)

In practice, this data can only be obtained algorithmically for relative small values of |ki|. It will be
taken from a “training box” defined by |ki|  kmax, where kmax varies from 5 to 20, depending on the
manifold.

As discussed, there is evidence - and proofs in some cases - that cohomology dimensions on these
spaces are described by formulae which are piecewise polynomial, with polynomials of degree d. For
this reason, it will sometimes be useful to modify the training data to

(ki, kikj)ij �! h
q(OX(k)) for d = 2

(ki, kikj , kikjkl)ijl �! h
q(OX(k)) for d = 3 .

(2.16)

By providing all monomials up to degree d in ki as an input the problem is e↵ectively converted into
a piecewise linear one.

A common measure for how successfully a trained network performs is the mean square loss
on the validation set. In the case of function approximation, a mean square loss translates into a
typical accuracy with which the function in question is approximated. For our application to bundle
cohomology it makes sense to introduce a di↵erent and often more stringent measure of success. In
practice, we are not necessarily satisfied with cohomology dimensions approximated by the network
within, say, a few percent. We would like the network to predict the exact cohomology dimensions,
after rounding to the nearest integer. We will, therefore, measure the success of training by the
percentage of cohomology dimensions within the training box which are correctly reproduced after
rounding.

Our networks have been realised with the Mathematica machine learning suite, and the fully-
connected networks in the next section as well as the networks that learn cohomology formulae have

7

are [11]

h
0(OX(k)) =

8
>>>><

>>>>:

1

2
(1 + k2)(2 + k2) , k1 = 0, k2 � 0

ind(OX(k)) , k1, k2 > 0

0 otherwise

(2.13)

h
1(OX(k)) =

8
>>>><

>>>>:

1

2
(�1 + k2)(�2 + k2) , k1 = 0, k2 > 0

�ind(OX(k)) , k1 < 0, k2 > �k1

0 otherwise ,

(2.14)

with the index given by ind(OX(k)) = 3
2(k1+k2)(2+k1k2). In line with our general discussion, we have

two-dimensional regions as well as one-dimensional ones, the latter along the positive coordinate axis.
Moreover, it is evident from the above formulae that cohomology dimensions jump discontinuously
across boundaries. As for surfaces, we would like to be able to conjecture formulae such as the above
from machine learning.

2.4 Set-up for machine learning

In summary, we are interested in exploring machine learning of line bundle cohomology on manifolds
X with complex dimensions d = 2, 3, of the type introduced above. Line bundles on these manifolds
are labelled by integer vectors k 2 Zh with components ki and are denoted OX(k). The cohomology
dimensions h

q(OX(k)) 2 Z�0, where q = 0, . . . , d, can be explicitly computed using the various
algorithmic methods outlined above. This leads to our training/validation data which is of the form

Zh
3 k �! h

q(OX(k)) 2 Z�0
. (2.15)

In practice, this data can only be obtained algorithmically for relative small values of |ki|. It will be
taken from a “training box” defined by |ki|  kmax, where kmax varies from 5 to 20, depending on the
manifold.

As discussed, there is evidence - and proofs in some cases - that cohomology dimensions on these
spaces are described by formulae which are piecewise polynomial, with polynomials of degree d. For
this reason, it will sometimes be useful to modify the training data to

(ki, kikj)ij �! h
q(OX(k)) for d = 2

(ki, kikj , kikjkl)ijl �! h
q(OX(k)) for d = 3 .

(2.16)

By providing all monomials up to degree d in ki as an input the problem is e↵ectively converted into
a piecewise linear one.

A common measure for how successfully a trained network performs is the mean square loss
on the validation set. In the case of function approximation, a mean square loss translates into a
typical accuracy with which the function in question is approximated. For our application to bundle
cohomology it makes sense to introduce a di↵erent and often more stringent measure of success. In
practice, we are not necessarily satisfied with cohomology dimensions approximated by the network
within, say, a few percent. We would like the network to predict the exact cohomology dimensions,
after rounding to the nearest integer. We will, therefore, measure the success of training by the
percentage of cohomology dimensions within the training box which are correctly reproduced after
rounding.

Our networks have been realised with the Mathematica machine learning suite, and the fully-
connected networks in the next section as well as the networks that learn cohomology formulae have

7

Can be shown from Cech cohomology/Koszul sequence.

Example 2: , dP2 h0(OdP2(k0l + k1e1 + k2e2))

-10

0

10

k0 -10

0

10

k1

-10

0

10

k2

region 1

region 2

region 3

region 4

region 5

region 6

not identified -10

0

10
k0 -10

0

10

k1

-10

0

10

k2

Figure 6: Regions in the Picard lattice for the zeroth cohomology of dP2, determined from the trained network in

Fig. 4 for (n1, n2) = (8, 8) and a training box of size kmax = 15. The figure on the left shows the regions obtained

after step (2) of the algorithm. The figure on the right shows the “cleaned-up” regions obtained after step (4) of

the algorithm. The legend labels the regions as in Eqs. (4.3), (4.4)

polynomial fit to each of the six regions (step (3) of the algorithm) leads to

h
0(OdP2(k)) =

8
>>>>>>>>><

>>>>>>>>>:

1 + 3
2k0 + 1

2k
2
0 + 1

2k1 �
1
2k

2
1 + 1

2k2 �
1
2k

2
2 in region 1 ,

1 + 2k0 + k
2
0 + k1 + k0k1 + k2 + k0k2 + k1k2 in region 2 ,

1 + 3
2k0 + 1

2k
2
0 + 1

2k2 �
1
2k

2
2 in region 3 ,

1 + 3
2k0 + 1

2k
2
0 + 1

2k1 �
1
2k

2
1 in region 4 ,

1 + 3
2k0 + 1

2k
2
0 in region 5 .

0 in region 6 .

(4.3)

Using these equations to determine the exact regions (step (4)) leads to the plot on the right-hand-
side of Fig. 6. In step (5), we then determine the inequalities which describe those regions. They are
given by

Region 1: �k1 � 0 �k2 � 0 k0 + k1 + k2 � 0
Region 2: k0 + k1 + k2 < 0 k0 + k1 � 0 k0 + k2 � 0
Region 3: �k1 < 0 �k2 � 0 k0 + k2 � 0
Region 4: �k1 � 0 �k2 < 0 k0 + k2 � 0
Region 5: �k1 < 0 �k2 < 0 k0 � 0
Region 6: otherwise

(4.4)

In summary, the network has learned the formula for the dimensions of the zeroth line bundle coho-
mology on dP2. By applying the master formula (2.4) to dP2, it can be shown that the above result
is indeed correct on the entire Picard lattice. The explicit proof can be found in Ref. [15].

We would like to analyse two further surface examples for which cohomology formulae are not yet
known. They are CI manifolds defined by the configuration matrices

X 2


P1 2
P2 3

�
, Y 2


P1 3
P2 4

�
. (4.5)

The first of these, X, is a K3 surface, while Y is a surface of general type with an ample canonical
bundle. For both cases, the rank of the Picard lattice is two and line bundles are denoted by O(k),
where k = (k1, k2). The results for the K3 example are shown in Fig. 7. As is evident, the network
identifies two large regions. We can also see a new phenomenon emerging which does not arise for
manifolds with an ample anti-canonical bundle. There are lower-dimensional regions, in the present

15

-10

0

10

k0 -10

0

10

k1

-10

0

10

k2

region 1

region 2

region 3

region 4

region 5

region 6

not identified -10

0

10
k0 -10

0

10

k1

-10

0

10

k2

Figure 6: Regions in the Picard lattice for the zeroth cohomology of dP2, determined from the trained network in

Fig. 4 for (n1, n2) = (8, 8) and a training box of size kmax = 15. The figure on the left shows the regions obtained

after step (2) of the algorithm. The figure on the right shows the “cleaned-up” regions obtained after step (4) of

the algorithm. The legend labels the regions as in Eqs. (4.3), (4.4)

polynomial fit to each of the six regions (step (3) of the algorithm) leads to

h
0(OdP2(k)) =

8
>>>>>>>>><

>>>>>>>>>:

1 + 3
2k0 + 1

2k
2
0 + 1

2k1 �
1
2k

2
1 + 1

2k2 �
1
2k

2
2 in region 1 ,

1 + 2k0 + k
2
0 + k1 + k0k1 + k2 + k0k2 + k1k2 in region 2 ,

1 + 3
2k0 + 1

2k
2
0 + 1

2k2 �
1
2k

2
2 in region 3 ,

1 + 3
2k0 + 1

2k
2
0 + 1

2k1 �
1
2k

2
1 in region 4 ,

1 + 3
2k0 + 1

2k
2
0 in region 5 .

0 in region 6 .

(4.3)

Using these equations to determine the exact regions (step (4)) leads to the plot on the right-hand-
side of Fig. 6. In step (5), we then determine the inequalities which describe those regions. They are
given by

Region 1: �k1 � 0 �k2 � 0 k0 + k1 + k2 � 0
Region 2: k0 + k1 + k2 < 0 k0 + k1 � 0 k0 + k2 � 0
Region 3: �k1 < 0 �k2 � 0 k0 + k2 � 0
Region 4: �k1 � 0 �k2 < 0 k0 + k2 � 0
Region 5: �k1 < 0 �k2 < 0 k0 � 0
Region 6: otherwise

(4.4)

In summary, the network has learned the formula for the dimensions of the zeroth line bundle coho-
mology on dP2. By applying the master formula (2.4) to dP2, it can be shown that the above result
is indeed correct on the entire Picard lattice. The explicit proof can be found in Ref. [15].

We would like to analyse two further surface examples for which cohomology formulae are not yet
known. They are CI manifolds defined by the configuration matrices

X 2


P1 2
P2 3

�
, Y 2


P1 3
P2 4

�
. (4.5)

The first of these, X, is a K3 surface, while Y is a surface of general type with an ample canonical
bundle. For both cases, the rank of the Picard lattice is two and line bundles are denoted by O(k),
where k = (k1, k2). The results for the K3 example are shown in Fig. 7. As is evident, the network
identifies two large regions. We can also see a new phenomenon emerging which does not arise for
manifolds with an ample anti-canonical bundle. There are lower-dimensional regions, in the present

15

-10

0

10

k0 -10

0

10

k1

-10

0

10

k2

region 1

region 2

region 3

region 4

region 5

region 6

not identified -10

0

10
k0 -10

0

10

k1

-10

0

10

k2

Figure 6: Regions in the Picard lattice for the zeroth cohomology of dP2, determined from the trained network in

Fig. 4 for (n1, n2) = (8, 8) and a training box of size kmax = 15. The figure on the left shows the regions obtained

after step (2) of the algorithm. The figure on the right shows the “cleaned-up” regions obtained after step (4) of

the algorithm. The legend labels the regions as in Eqs. (4.3), (4.4)

polynomial fit to each of the six regions (step (3) of the algorithm) leads to

h
0(OdP2(k)) =

8
>>>>>>>>><

>>>>>>>>>:

1 + 3
2k0 + 1

2k
2
0 + 1

2k1 �
1
2k

2
1 + 1

2k2 �
1
2k

2
2 in region 1 ,

1 + 2k0 + k
2
0 + k1 + k0k1 + k2 + k0k2 + k1k2 in region 2 ,

1 + 3
2k0 + 1

2k
2
0 + 1

2k2 �
1
2k

2
2 in region 3 ,

1 + 3
2k0 + 1

2k
2
0 + 1

2k1 �
1
2k

2
1 in region 4 ,

1 + 3
2k0 + 1

2k
2
0 in region 5 .

0 in region 6 .

(4.3)

Using these equations to determine the exact regions (step (4)) leads to the plot on the right-hand-
side of Fig. 6. In step (5), we then determine the inequalities which describe those regions. They are
given by

Region 1: �k1 � 0 �k2 � 0 k0 + k1 + k2 � 0
Region 2: k0 + k1 + k2 < 0 k0 + k1 � 0 k0 + k2 � 0
Region 3: �k1 < 0 �k2 � 0 k0 + k2 � 0
Region 4: �k1 � 0 �k2 < 0 k0 + k2 � 0
Region 5: �k1 < 0 �k2 < 0 k0 � 0
Region 6: otherwise

(4.4)

In summary, the network has learned the formula for the dimensions of the zeroth line bundle coho-
mology on dP2. By applying the master formula (2.4) to dP2, it can be shown that the above result
is indeed correct on the entire Picard lattice. The explicit proof can be found in Ref. [15].

We would like to analyse two further surface examples for which cohomology formulae are not yet
known. They are CI manifolds defined by the configuration matrices

X 2


P1 2
P2 3

�
, Y 2


P1 3
P2 4

�
. (4.5)

The first of these, X, is a K3 surface, while Y is a surface of general type with an ample canonical
bundle. For both cases, the rank of the Picard lattice is two and line bundles are denoted by O(k),
where k = (k1, k2). The results for the K3 example are shown in Fig. 7. As is evident, the network
identifies two large regions. We can also see a new phenomenon emerging which does not arise for
manifolds with an ample anti-canonical bundle. There are lower-dimensional regions, in the present

15

Can be shown

from index formula.

ML can be used to generate conjectures for cohomology formulae.

Can ML help with the large amount of string data?

Heterotic line bundle standard models
(Anderson, Constantin, Gray, Lukas, Palti, 1106.4804, 1202.1757, 1307.4787)

Based on line bundle sums over CY three-folds:

V =
5M

a=1

OX(ka) �! X

Number of models per CY: Ntot ⇠ 105h
1,1(X)

A ``brut-force” scan for shows a tiny fraction of

these are quasi-standard models:

h1,1(X)  6

Specified by three-fold and integer matrix . X h1,1(X)⇥ 5 K = (kia)

*

A consistent string model with the right gauge group and 3 chiral families*

h = h
1,1(X) 2 3 4 5 6

number of CYs 6 12 19 23 8
number of models 0 6 552 21731 41949

number, N̄ , of models per CY 0 0.5 29 945 5244

Table 1: Number of models found in a computer scan for favourable CICYs with h  6 for each h.

satisfied in this case.) A simple approach is to assume that the main dependence of the number of
models is on the Picard number, h, and, to neglect the possible e↵ect of the intersection numbers
and the second Chern class for now. The average number, N̄ = N̄(h) of models per CY as a function
of h, taken from the last row of Table 1, has been plotted (logarithmically) in Fig. 1. A linear fit to

h1,1= 1 h1,1= 2 h1,1= 3 h1,1= 4 h1,1= 5 h1,1= 6
0

1

2

3

4
logHN L versus h1,1

Figure 1: The logarithm of N̄ , the average number of models per CY, as a function of h = h
1,1(X),

taken from the data in Table 1. The red line is a linear fit to the data.

this data (which corresponds to the red line in Fig. 1) leads to

log(N̄(h)) ' �4.1 + 1.4h . (1)

The largest known Picard number is hmax = 491 (which appears within the Kreuzer-Skarke data set)
and the largest value within the CICY list is hCICY = 19. Using the above linear formula to boldly
extrapolate to those values we find

N̄(hCICY) ' 1022 , N̄(hmax) ' 10662 . (2)

Clearly, these numbers are quite dramatic, even if we restrict ourselves to the CICYs. The predicted
number of standard models even within this set is significantly larger than can be currently stored,
let alone found by a scan. However, the method so far is quite crude and the extrapolation to large
h adventurous.

To see some of the problems, consider Fig. 2 which shows the number of models as a function of
h for each CICY (rather than the average over all CICYs with the same h, as considered previously).

2

h = h
1,1(X) 2 3 4 5 6

number of CYs 6 12 19 23 8
number of models 0 6 552 21731 41949

number, N̄ , of models per CY 0 0.5 29 945 5244

Table 1: Number of models found in a computer scan for favourable CICYs with h  6 for each h.

satisfied in this case.) A simple approach is to assume that the main dependence of the number of
models is on the Picard number, h, and, to neglect the possible e↵ect of the intersection numbers
and the second Chern class for now. The average number, N̄ = N̄(h) of models per CY as a function
of h, taken from the last row of Table 1, has been plotted (logarithmically) in Fig. 1. A linear fit to

h1,1= 1 h1,1= 2 h1,1= 3 h1,1= 4 h1,1= 5 h1,1= 6
0

1

2

3

4
logHN L versus h1,1

Figure 1: The logarithm of N̄ , the average number of models per CY, as a function of h = h
1,1(X),

taken from the data in Table 1. The red line is a linear fit to the data.

this data (which corresponds to the red line in Fig. 1) leads to

log(N̄(h)) ' �4.1 + 1.4h . (1)

The largest known Picard number is hmax = 491 (which appears within the Kreuzer-Skarke data set)
and the largest value within the CICY list is hCICY = 19. Using the above linear formula to boldly
extrapolate to those values we find

N̄(hCICY) ' 1022 , N̄(hmax) ' 10662 . (2)

Clearly, these numbers are quite dramatic, even if we restrict ourselves to the CICYs. The predicted
number of standard models even within this set is significantly larger than can be currently stored,
let alone found by a scan. However, the method so far is quite crude and the extrapolation to large
h adventurous.

To see some of the problems, consider Fig. 2 which shows the number of models as a function of
h for each CICY (rather than the average over all CICYs with the same h, as considered previously).

2

For CICYs: hmax = 19 N(hmax) ' 1023

All known CYs: hmax = 491 N(hmax) ' 10662

Bold extrapolation leads to:

There is no way to check this by systematic scanning.
Can ML help?

Supervised learning of standard models

X 2

2

6666664

P1 0 1 1
P1 0 1 1
P1 1 1 0
P1 1 1 0
P1 1 0 1
P1 1 0 1

3

7777775
Example: , SMs, same number of non-SMs ⇠ 17000

Network: simple 2 or 3 layer, fully connected

Training set: {K ! 0 or 1}

non-SM SM

K =

0

BBBBBB@

�1 �1 �1 1 2
0 �2 0 1 1
�1 1 �1 0 1
1 0 1 0 �2
0 1 0 0 �1
1 0 1 �2 0

1

CCCCCCA
! 1 K =

0

BBBBBB@

2 �1 �1 0 0
0 1 0 �1 0
�1 2 2 �1 �2
1 0 0 0 �1
�1 0 1 1 �1
1 �1 0 �1 1

1

CCCCCCA
! 0

SM non-SM

Two examples from the data set:

3 4 5 6 7
0

1000

2000

3000

4000

5000

|K|

N

test generalisation to

matrices with larger entries

training set validation set

100% 100% 97%

This provides a fast method to distinguish SM and non-SMs

which works beyond the training range.

Still requires testing every matrix -> limited improvement.

Auto-encoding standard models

Use the same training set of SMs and non-SMs, one-hot encoded.

encoder

decoder
ELU activation

Network:

Input 1 2 3 4 5 6 7 8 Output

6�5�11 32 32 16 16 8 8 2 2

Input 1 2 3 4 5 6 7 Output

2 8 8 16 16 32 32 6�5�11

Training: minimise |Kin �Kout|

Training set: SM and non-SMs for K |K|  5

(Vaudrevange 1811.05993)

-1.0 -0.5 0.0 0.5 1.0 1.5

0

1

2

3

Use trained encoder to map into 2d space:

|K|  5
SMs

non-SMs

-1.0 -0.5 0.0 0.5 1.0

0

1

2

3

|K| > 5
SMs

non-SMs

Auto-encoder can distinguish SMs and non-SMs and generalises

beyond training range.

Standard-like models with and without Higgs

Training set: {K ! 0 or 1}

with Higgswithout Higgs

E.g. auto-encoder:

-0.5 0.0 0.5 1.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

blue: without Higgs
red: with Higgs

It is not straightforward to get a network to learn the difference.

We need a feature-enhanced data set:

This is not unexpected, given the line bundle cohomology results.

K = (kia) �! K̃ = (kia, k
i
ak

j
a, k

i
ak

k
ak

m
a)

Training set:

with Higgswithout Higgs

{K̃ ! 0 or 1}

A simple fully connected net (3 layers, width (256,64,16)) leads to

a 100% success rate.

First steps into RL

Environment: line bundles over given CY L = OX(k) ! X X

actions: for a given ki ! ki ± 1 i

ind(OX(k))
!
= I

goal: find line bundles with a given ``target index” , so IOX(k)

Example: bi-cubic CY, , demand L = OX(k1, k2) ind(L) = �20

-10 -5 0 5 10

-10

-5

0

5

10

(M. Larfors, R. Schneider, 2003.04817)
(J. Halverson, B. Nelson, F. Ruehle 10903.11616)

Trained policy net guides to states with the correct index for any

random initial state!

Some sample trajectories:

-10 -5 0 5 10

-10

-5

0

5

10

terminal

episode

first

last

terminal

-10 -5 0 5 10

-10

-5

0

5

10

terminal

episode

first

last

terminal

-10 -5 0 5 10

-10

-5

0

5

10

terminal

episode

first

last

terminal

-10 -5 0 5 10

-10

-5

0

5

10

terminal

episode

first

last

terminal

Method: REINFORCE, training box, , 4 layers, width 32

 realised in Mathematica

|ki|  12

Conclusions

Thanks

• ML can be used to generate non-trivial conjectures for
 line bundle cohomology formulae.

• Simple fully connected networks with supervised training can
 be used to distinguish SMs and non-SMs and they generalise
 beyond the training range.

• SM and non-SMs can also be distinguished with unsupervised
 learning using auto-encoders.

• This may help to explore more of the string landscape - but
 reinforcement learning will probably be required.

• Learning non-topological properties such as presence/absence
 of Higgs is more difficult but can work with feature-engineering.

• RL of topological properties looks promising. Goal is to apply it
 to non-trivial bundles (e.g. monads).

