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Introduction and Motivation




Why string theory and ML?

® String theory leads to very large data sets

(latest estimate: 10°72°%Y solutions to string theory)
(W. Taylor, Y. Wang, arXiv:1510.04978)

® Data is “mathematical”, often given in terms of
infeger-valued tensors

® Different from usual data such as pictures, videos

® Machine learning provides a set of “large-data” techniques



So two basic questions:

® Can ML help reveal mathematical structures within string theory?
(Can it be more than a ““black box"?)

Example: Learning line bundle cohomology
(C. Brodie, A. Constantin, R. Deen, AL, arXiv:1906.08769)

® Can ML help sort through the large amount of string data?

Example: Learning string theory standard models
(R. Deen, Y.-H. He, S.-J. Lee, AL, arXiv:2003.13339)



String Theory Basics




Closen and open strings

o open string closed string

1

e One free constant: string tension T =
2ma’

e Consistent in 10 (or 11) space-time dimensions



Spectrum

n=0 — observed particles

, 2
® SPeC"-rum. Od/m =N c N { n > O — Superheavy

e massless (n = 0) modes contain: graviton (closed string)
gauge fields (open string)

M, = ~ Mp; ~ 1017GeV > My ~ 101°GeV



Dimensions

We need to “curl up” six (or seven) of the dimensions to make
contact with physics -> compactification

D=10/11
string/M—theory

\1/ on d=6/7 — dim. space

N

C)=4 theorD

— Calabi-Yau manifold
(bi-cubic)




How does the 4d theory depend on the “curling-up”?

topology : <\O/> or ?

-> determines structure of 4d theory: forces, matter content, . . .

(Maths: Algebraic Geometry)

T

focus for this talk

shape - <<>/> o @ :

-> determines couplings/particle masses in 4d theory
(Maths: Differential Geometry)




Topologies for curling up, e.g in 2d:

sphere: o g=_0
only consistent choice for 2d
‘/////’curﬁng—up
torus: QO/) g=1

In 2d topology is classified by the genus g = “number of holes”.

More generally, in éd, it is classified by integer data -> many choices.



The large number of string solutions mentioned
earlier counts these different topologies!

Some choices lead to a 4d theory close to the
standard model of particle physics, many others do not.



How to find the 4d theory from a given topology?

The space X carries additional structure, for example line bundles.

X
':"A \
X
N "\ “
"Ox Ox (1) Ox(2)

Line bundle topology is specified by integers

Ox (k) = Ox ki, ko, ... kn)



Line bundles have sections:
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Number of independent section is counted by cohomology.

A borrendous calculation

L=0x(k)—(

l

Counts

R°(L), k' (L), h* (L), h*(L))

\ /

particles in 4d



Can ML help reveal mathematical structures?




Computing line bundle cohomology

Base manifold: complex surface or (CY) three-fold X
Line bundles: L = Ox (k) — X, k integer vector with dim. A'!(X)

Want to know: cohomology dimensions h%(X, Ox (k))

Computations can be *very* complicated and may involve
Cech cohomology, spectral sequences, Koszul resolutions,...

Algorithmic realisations in terms of commutative algebra are
often computationally intense.
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Simple machine learning of line bundle cohomology

(Fabian Ruehle 1706.07024)

network:  k-Z5|x o wx b B x o0 B x o wox+ 8B fo(k)
n h

function:  fo(k) = >4 >: (wioc(Wijk; + b;) + Bi)
i—1 i—1

training data: {(k;, h?(Ox(k;))} o 0o

predict cohomology dimensions h?(Ox(k)) ~ fo, (k)



Example: line bundle cohomology on dI*s

Want to learn h°(dPy, O(kol + kie1 + kaes)), k = (ko, k1, ko)
Training data: about 1000 cohomology values from a box |k;| < 10

Number of neurons in first layer: 100

rounds
k 1000 2000 3000
10

\ —— validation
o 100

8 Q training
107" \

\

Box |k;| < 10: net gives correct cohomology for 98% of line bundles

Box|k;| < 15: this rate decreases to 73%



This can be repeated, with refinements, for other surfaces and
three-folds.

Advantages:

e Fast computation of cohomology dimensions from trained net
e Accurate in 90% of cases, sometimes more

Disadvantages:

e Accurate in only 90% of cases
® Fails outside the ““training box”

e Black box: offers no insight into structure of cohomology

Can we use ML to learn more about the structure of cohomology?



Formulae for line bundle cohomology (Constantin, AL 1808.09992,

Larfors, Schneider 1906.00293)

Complicated computations mask a relatively simple structure.
“Experimental Mathematics” indicates the following:

The Picard lattice splits into regions (often cones). In each region
h9(X,Ox(k)) is a polynomial in k with degree equal to the
complex dimension of X .

- pl
Example 1: X € pA
h?(Ox (k))

ind(Ox (k) = 2k1 + Yko + 2kk1 k3 + 3Kk3.

0
4

-
1 -

ind(Ox (k)

ind(Ox (k) + 2k1 — 2k}
0

ki1+1

ko + 1

ki1 > —1 and k9 > 0

ki < —1and k1 + ko >0
ko <0Qor ki +ky<O
]ﬁzoal’ldkzzo

ko >0and k1 + ko =0




Example 2: dP;

1
5 (ko+ 1) (ko +2) ko >0, ky >0
1 1
1 (Oap, (ko, k1)) = S (ko +1)(ko+2) + ski(l—k1) k1 <0, ko >0, ko+ k1 20
L 0 otherwise

Some understanding for surfaces in terms of index formula:
(Brodie, Constantin, Deen, AL 1906.08769)

C-D
02

ﬁ:D—Z 9(—C-D)ceil<

) C = h(D) = ho(D)
Cel ‘

In many cases, there is a vanishing theorem (Kodaira or similar)
which shows that h4(O(D)) =0 for ¢ > 0. In such cases

hO(O(D)) = ind(D)

No clear mathematical understanding for three-folds and higher yet.



Can we use ML to conjecture cohomology formulae?
(C. Brodie, A. Constantin, R. Deen, AL, 1906.08769,
D. Klaever, L Schlechter 1809.02547)

Design a net which matches the structure of the formula:

O [—| (Ws,bs)

Assume net has been trained: — gg,, W30, b3g
ao > g, (k) - bso a ~ gg, (k)Wsg

Line bundles with similar (ag,a) are in the same region. This can
be used to identify regions and the polynomials.



Example 1: bi-cubic X ¢

1) Train and identify regions:
ks

15|

10

-10

15}

"
2) Find correct cubic polynomial for each region by a fit:

blue: h'(Ox (k1, ko)) =0

W (Ox (k1. k2)) = =5 (K + ko) (2 4 ko)



3) Use these equations to find the exact regions:
k2

15|

10

4) Find equations for boundaries of regions

(=1 ko) (=24 k), k1 =0, ky >0
h'(Ox (k) = —ind(Ox(k)) k<0, kg > —Fk
0 otherwise |,
ind(Ox (k) = 3 (k1+kz)(2+k1k2)

Can be shown from Cech cohomology/Koszul sequence.



Example 2: dP2, h%(Ogp,(kol + kier + koes))

e region 1
region 2
e region 3
region 4
region 5
region 6

e not identified

1+ ko + Sk2+ Lk — Lk2 4 Ly — Li2 in region 1,
1+ 2ko + k3 + k1 + koky + k2 + koko + k1ks  in region 2,
. 14 3ko + 3k2 + Sky — L2 in region 3, Can be shown
h (OdP2(k)) = 3 172 , 1 17.2 : : .
L+ Sko + 3k + 3kt — 5k in region 4, from index formula.
1+ %ko -+ %kg in region 5.
\O in region 6 .

Region 1: —k;1 >0 —ko>0 ko+ki+k>0

Region 2: ko t+ki+ko<O0 ko+k1 >0 kog+ko>0
Region 3: —k1 <0 —k9>0 ko + ko >0
Region 4: —k;1 >0 —ko <O ko + ko >0
Region 5: —k;1 <0 —ko <O ko > 0

Region 6: otherwise

ML can be used to generate conjectures for cohomology formulae.




Can ML help with the large amount of string data?




Heterotic line bundle standard models
(Anderson, Constantin, Gray, Lukas, Palti, 1106.4804, 1202.1757, 1307.4787)

Based on line bundle sums over CY three-folds:

s}
V=EP0Ox(k. — X

a

|
—_

Specified by three-fold X and h''!'(X) x 5 integer matrix K = (k).

Number of models per CY: N ~ 105" (X

A “brut-force” scan for h'(X) <6 shows a tiny fraction of
these are quasi-standard models: *

*
A consistent string model with the right gauge group and 3 chiral families



log(N) versus A'"!
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hl=4

nl=s

W l=6

log(N(h)) ~ —4.1+ 1.4h

Bold extrapolation leads to:
For CICYs: Roax = 19
All known CYs: Rmax = 491

N (hmax) = 10%°
N (hmax ) ~ 10902

There is no way to check this by systematic scanning.

Can ML help?



Supervised learning of standard models
PO )

Example: X € , ~ 17000 SMs, same number of non-SMs

=
—_ = == O
OO o=
__ O O = =

Training set: {K — 0O or 1}

N

non-SM SM

Two examples from the data set:

SM non-SM
1 -1 -1 1 2 2 -1 -1 0 0
/ 0 -2 0 1 1 ) ( 0 1 0 -1 0 \
1 1 -1 0 1 1 2 92 -1 -2
K=1 1 0o 1 o o |71 K=1 49 09 o o -1 |9
0o 1 0 0 -1 1 0 1 1 -1
\ 1 0 1 -2 0 ) \ 1 -1 0 -1 1)

Network: simple 2 or 3 layer, fully connected



5000

4000 }

3000 }

2000

1000 }

training set validation set test generalisation to
matrices with larger entries

|

100% 100% 97%

This provides a fast method fo distinguish SM and non-SMs
which works beyond the training range.
Still requires ftesting every matrix -> limited improvement.




Auto-encoding standard models

Use the same training set of SMs and non-SMs, one-hot encoded.
(Vaudrevange 1811.05993)

Network:

encoder

© ~.o:'o. _/ .o:o. _/ .o:o. / .o:o. ./ ©
Input 1 5 3 4 5 5 5 3 Outpyt

/ decoder

ELU activation
Training set: SM and non-SMs K for |K| <5

Training: minimise |Ki, — Kout]



SMs

Use trained encoder to map into 2d space
non-SMs

1.5

> 9

SMs

non-SMs

.0

1

0.5

0.0

-0.5

-1.0

Auto-encoder can distinguish SMs and non-SMs and generalises

beyond training range.




Standard-like models with and without Higgs

Training set: {K — 0 or 1}

/N

without Higgs with Higgs

It is not straightforward to get a network fo learn the difference.

E.g. auto-encoder:

10F

0.5

blue: without Higgs

0.0[

red: with Higgs

-0.5




We need a feature-enhanced data set:

K=(k) — K=k kK, EELEm

a' "a’ " "a’ "a’a

This is not unexpected, given the line bundle cohomology results.

Training set: {K —=0or1}

N

without Higgs with Higgs

A simple fully connected net (3 layers, width (256,64,16)) leads to
a 100% success rate.



First steps info RL




(J. Halverson, B. Nelson, F. Ruehle 10903.11616)
(M. Larfors, R. Schneider, 2003.04817)

Environment: line bundles L = Ox (k) — X over given CY X

actions: k; — k; £1 for a given ¢

goal: find line bundles Ox (k) with a given “target index”, so

ind(Ox (k) = I

Example: bi-cubic CY, L = Ox(k1,k2), demand ind(L) = —20

10+

-10+}




Method: REINFORCE, training box, |ki| < 12, 4 layers, width 32
realised in Mathematica

Trained policy net guides to states with the correct index for any
random initial state!

Some sample trajectories:

10

5L

0f
_5}

_10L

10

10}

terminal
o o
[ ] )
[ ) 0
®
[ ) 0
(]
o
-10 -5 5 10
terminal
[
o
[
®
[
o
-10 -5 5 10

episode
first
last

terminal

episode
first
last

terminal

10

—10k

10|

—10}t

terminal
P
(1]
0
(1]
0
(1]
0 o
[ o
0 [ ]
@
e Q)
o
(]
-10 -5 5 10
terminal
o
[ ]
(]
@ N e
(]
(]
-10 -5 5 10

episode
first
last

terminal

episode
first
last

terminal



Conclusions




ML can be used to generate non-trivial conjectures for
line bundle cohomology formulae.

Simple fully connected networks with supervised fraining can
be used to distinguish SMs and non-SMs and they generalise
beyond the training range.

SM and non-SMs can also be distinguished with unsupervised
learning using auto-encoders.

This may help to explore more of the string landscape - but
reinforcement learning will probably be required.

Learning non-topological properties such as presence/absence
of Higgs is more difficult but can work with feature-engineering.

RL of topological properties looks promising. Goal is to apply it
to non-trivial bundles (e.g. monads).

Thanks



