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Challenges towards HL-LHC

Paradigm shift: model searches — fundamental understanding of data

— precision QCD

— precision simulations

— precision measurements

= Nothing fundamental without simulations ot even unsupervised...
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Challenges towards HL-LHC

Paradigm shift: model searches — fundamental understanding of data

— precision QCD

— precision simulations

— precision measurements

= Nothing fundamental without simulations ot even unsupervised...

10-year HL-LHC requirements

simulated event numbers ~ expected events ffactor 25 for HL-LHC]
— general move to NLO/NNLO  [1%-2% error]

higher relevant multiplicities et recoil, extra jets, WBF, etc.]

new low-rate high-multiplicity backgrounds

— cutting-edge predictions not through generators N3Loin Pythia?]
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— cutting-edge predictions not through generators N3Loin Pythia?]

Three ways to use ML

— improve current tools: iSherpa, ML-MadGraph, etc
— new tools: ML-generator-networks
— conceptual ideas in theory simulations and analyses




Generative networks

GANGoOgh  [Bonafilia, Jones, Danyluk (2017)]

— neural network: learned function f(X) [regression, classification]

— can networks create new pieces of art?
map random numbers to image pixels?

— train on 80,000 pictures [organized by style and genre]
— generate flowers
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Generative networks

GANGoOgh  [Bonafilia, Jones, Danyluk (2017)]

— neural network: learned function f(X) [regression, classification]

— can networks create new pieces of art?
map random numbers to image pixels?

— train on 80,000 pictures [organized by style and genre]

Edmond de Belamy [Caselles-Dupre, Fautrel, Vernier (2018)]

— trained on 15,000 portraits
— sold for $432.500
= ML all marketing and sales

Jet portraits  (de Oliveira, Paganini, Nachman (2017)]
— calorimeter or jet images
sparsity the technical challenge
1- reproduce valid jet images from training data
2- organize them by QCD vs W-decay jets
— high-level observables m, 74 as check
= GANs generating QCD jets
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GAN algorithm

Generating events  [phase space positions, possibly with weights]

— training:  true events {x7}
output: generated events {r} — {xg}
— discriminator constructing D(x) by minimizing  (classifier D(x) = 1, 0 true/generator]

Lp=(—log D(X)>XT +( —log(1 — D(X))>XG
— generator constructing r — xg by minimizing (0 needed]
Lg = ( —log D(x))xG
— equilibrium D =05 = Lp=Lg=—109g0.5
= statistically independent copy of training events
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GAN algorithm

Generating events  [phase space positions, possibly with weights]
— training:  true events {x7}
output: generated events {r} — {xg}
— discriminator constructing D(x) by minimizing  (classifier D(x) = 1, 0 true/generator]
— generator constructing r — xg by minimizing (0 needed]
= statistically independent copy of training events

Generative network studies

Jets  [de Oliveira (2017), Carrazza-Dreyer (2019)]

— Detector simulations  [paganini (2017), Musella (2018), Erdmann (2018), Ghosh (2018), Buhmann (2020)]
— Events [Otten (2019), Hashemi, DiSipio, Butter (2019), Martinez (2019), Alanazi (2020), Chen (2020), Kansal (2020)]
— Unfolding  [patta (2018), omnifold (2018), Bellagente (2019), Bellagente (2020), Vandegar (2020), Howard (2020)]
— Templates for QCD factorization (Lin (2019)]

— EFT models [Emwin (2018)]

— Event subtraction  (sutter (2019)]

— Phase space  (Bothmann (2020), Gao (2020), Kiimek (2020)]

— Basics [GANpification (2020), DCTR (2020)]

— Unweighting  [verheyen (2020), Backes (2020)]

Superresolution  [pigello (2020), Baldi (2020)]




GANplification

Gain beyond training data [Butter, Diefenbacher, Kasieczka, Nachman, TP]

— true function known
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1— How to GAN LHC events

Idea: replace ME for hard process [sutter, TP, Winterhalder]

— medium-complex final state {t — 6 jets

t/t and W* on-shell with BW 6 x 4 = 18 dof
on-shell external states — 12 dof [constants hard to learn]
parton level, because it is harder

— flat observables flat [phase space coverage okay]

— standard observables with tails [statistical error indicated]
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1— How to GAN LHC events

Idea: replace ME for hard process [sutter, TP, Winterhalder]

— medium-complex final state {t — 6 jets

t/t and W+ on-shell with BW 6 x 4 = 18 dof
on-shell external states — 12 dof [constants hard to learn]
parton level, because it is harder

flat observables flat [phase space coverage okay]
— standard observables with tails [statistical error indicated]

improved resolution [50M generated events]

. . . 50M generated events %10
Forward simulation working = :
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Statistical bonus: unweighting

Gaining beyond GANpliflication  [sutter, TR, Winterhalder]
— phase space sampling: weighted events (ps weight x| A|2]
events: constant weights
— probabilistic unweighting weak spot of standard MC

— learn phase space patterns (density estimation]
generate unweighted events fthrough loss function]

— compare training, GAN, classic unweighting
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Statistical bonus: subtraction
Subtract samples without binning  Buteer, TP, interhalder]

Ap_s = /A% + A% > max(AB, AS)

— GAN setup: differential class label, sample normalization
— toy example
1 1
Pg(x) = > + 0.1 Ps(x) = X = Pg_s=0.1

— statistical uncertainty
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Statistical bonus: subtraction

Subtract samples without binning  Buteer, TP, interhalder]

Ap_s = /A% + A% > max(AB, AS)

GAN setup: differential class label, sample normalization
toy example

1 1
PB(X) = ; +0.1 Ps(X) = ; = Pg,s =0.1

statistical uncertainty

— event-based background subtraction weird notation, sorry]
pp—ee” B ppoy—oee (S = p—Z—ee (BS)
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Statistical bonus: subtraction

Subtract samples without binning  Buteer, TP, winterhalder]

Ap_s = /A% + A% > max(AB, AS)

— GAN setup: differential class label, sample normalization
— toy example
1 1
PB(X)Z ;4—01 Ps(X)= ; = Pg_s=0.1

— statistical uncertainty

— event-based background subtraction  fweird notation, sorry]
pp—e'e” (B) pp—sy—ete” (S) = p—Z—ee” (BS)
— collinear subtraction [assumed non-local]

pp — Zg (B: matrix element, S: collinear approximation)
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2— How to GAN away detector effects

Goal: invert Monte Carlo [Beliagente, Butter, Kasiczka, TP, Winterhalder]

— parton shower, detector simulation typical examples  [drawing random numbers]
— inversion possible, in principle [entangled convolutions, model assumed]

— GAN task

DELPHES GAN
partons ~ — "~ detector — partons

= Full phase space unfolded

Conditional GAN

— random numbers — parton level
hadron level as condition
matched event pairs

Condition




Detector unfolding

-
Reference process pp — ZW — (¢£) (jj) z "
— broad jj mass peak W 7

narrow ¢¢ mass peak j
modified 2 — 2 kinematics '
fun phase space boundaries

— GAN same as event generation  with MMD]

Model (in)dependence

x10~2 x107*
2.5 Truth Truth
—— FCGAN — FCGAN
—— Delphes —— Delphes
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Detector unfolding -

Reference process pp — ZW — (££) (jj) z o
— broad jj mass peak W i
narrow £¢ mass peak p

modified 2 — 2 kinematics
fun phase space boundaries

— GAN same as event generation  fwith MmD]

Model (in)dependence
— detector-level cuts [14%, 39% events, no interpolation, MMD not conditional]
prj, = 30 ...50 GeV PTj= 30 ... 40 GeV Pre— = 20 ...50 GeV (12)

Py > 60 GeV (13)
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Detector unfolding

Reference process pp — ZW — (££) (jj) > "

— broad jj mass peak
narrow £¢ mass peak ;
modified 2 — 2 kinematics
fun phase space boundaries

— GAN same as event generation  fwith MmD]

Model (in)dependence
— detector-level cuts [14%, 39% events, no interpolation, MMD not conditional]

pr.j, =30...50 GeV pr.j,=30...40 GeV Pr - = 20 ...50 GeV (12)
Py > 60 GeV

(13)
— model dependence [Thank you to BenN] x10~%
— train: SM events 6.0 _ :C(‘}‘A;“)
test: 10% events with W’ in s-channel |

—— Truth (SM)

= Working fine, but ill-defined
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3— Proper inverting

Invertible networks [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Kéthe]

— network as bijective transformation — normalizing flow
Jacobian tractable [specifically: coupling layer]
evaluation in both directions — INN  [Ardizzone, Rother, Ksthe]

— standard setup, random-number-padded working like FCGAN
— conditional: parton-level events from {r}
— maximum likelihood loss

L = — (log p(0]Xp, Xa)) 1, x,

99(Xp, X,
<Iogp( (Xp, X4)) +Iog‘M

Xp:Xd

Condition

§(r, f(za))
cINN
9(@p, f(z4))

> — log p(8) + const.
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Invertible networks [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Kéthe]

network as bijective transformation — normalizing flow
Jacobian tractable [specifically: coupling layer]
evaluation in both directions — INN  [Ardizzone, Rother, Ksthe]

standard setup, random-number-padded working like FCGAN
conditional: parton-level events from {r}
maximum likelihood loss

Again pp — ZW — (££) (jj)

— performance on distributions like FCGAN
— parton-level probability distribution for single detector event
= Well-defined statistical inversion

Single detector cvent
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4— Inverting to hard process

What theorists want: undo ISR
— detector-level process pp — ZW+jets  (variable number of objects]
— ME vs PS jets decided by network

— training jet-inclusively or jet-exclusively
parton-level hard process chosen 2 — 2

x10~% x10~%
H 2 jet incl. 25
————— Parton Truth
—— Parton cINN
rrrrr Detector Truth
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4— Inverting to hard process

What theorists want: undo ISR
— detector-level process pp — ZW+jets  (variable number of objects]
— ME vs PS jets decided by network

— training jet-inclusively or jet-exclusively
parton-level hard process chosen 2 — 2

Towards systematic inversion

— detector unfolding known problem

— QCD parton from jet algorithm standard
— jet radiation possible

= Invertible simulation in reach

forward

scattering QCD shower
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inverse




5— Inverting to measure

Recycle cINN for inference  [ieringer, Butter, Heimel, Héche, Kéthe, TP, Radev]

— condition jets with QCD parameters

train model parameters — Gaussian latent space
test Gaussian sampling — QCD parameter measurement
— going beyond Cy4 vs Cg  [Kuuth etal]

2z(1 —
Pag = Cr [qu%
z(1—-y) =201 -y
1-z0-y) 1-0-20-y

Pgg = Tr [qu (22 +0 = 2)2) + Coqyz(1 — z)]

+ Fgq(1 — 2) + Cqqyz(1 — z)]

Pgg = 2Cp [Dgg < ) + Fggz(1 — 2) + Cggyz(1 — z)]




5— Inverting to measure

Recycle cINN for inference [Bieringer, Butter, Heimel, Héche, Kéthe, TP, Radev]

— condition jets with QCD parameters
train model parameters — Gaussian latent space
test Gaussian sampling — QCD parameter measurement

— going beyond C4 vs Cr  [Kiuth etal]

2z(1 —y)

Pqg = Cr [qum

+ Faq(1 — 2) + Cqqyz(1 — Z)]
2(1—vy) N 1-20-y
1—z(1-y) 1-(1-20-y)
Pgq = Tr [qu (22 +( - 2)2) + Cgqyz(1 — Z)]

— idealized shower [sherpal

Pgg = 2Cp [Dgg < ) + Fggz(1 — 2) + Cggyz(1 — z)]

0.4
= Posterior

—— Gaussian fit
== Absolute error of 2.5




5— Inverting to measure

Recycle cINN for inference [Bieringer, Butter, Heimel, Héche, Kéthe, TP, Radev]

— condition jets with QCD parameters

train model parameters — Gaussian latent space
test Gaussian sampling — QCD parameter measurement
— going beyond C4 vs Cr  [Kiuth etal]
Paq = Cr | Dgg 221 =) + Fag(1 — 2) + Cqqyz(1 — 2)
= _ 4 Z —Z
qq F|Paay 20—y qq qqY-
z(1 —y) (1-20 -y
P, :ZCA[D < + + Fggz(1 — 2) + C, yz(1fz)]
"g T\i—zi-y) 1-(-a0-n) ¥ "g
Pog = Ta [Fag (£ +(1 = 2%) + Gaayz1 = 2)] o = ™| — i
. . -+ Relative error of 2%
— idealized shower [Sherpa] 4 - ibs:me error of22.5

— reality hitting...
— More ML-opportunities...

o =2.3




Machine learning for LHC theory

HL-LHC data vs fundamental physics

— MC challenges

higher-order precision in bulk
coverage of tails
unfolding to access fundamental QCD

— GANSs the cool kid

generator trying to produce best events
discriminator trying to catch generator,

— INNs my theory hope

flow networks for control
condition for inversion
Bayes for uncertainties

— Progress needs Professionals!
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