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Introduction
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Machine Learning: From Signals (Data) to Information

I We are given some input signal (data) and want to extract some information of interest

I These images are are made up of individual pixel color and luminance that represent the Eiffel Tower
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Machine Learning: From Signals (Data) to Information

I Each drone senses its own velocity and the distances to neighboring drones

I They want to determine accelerations that would lead them to coordinate their velocities (globally)
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Learning Parametrizations

I Given input/output pairs in a training set ⇒ Find a function approximation that generalizes well

I Learning parametrization ⇒ function class that restricts the space of allowable maps Φ(x)

Perceptron

x
z = H x σ

[
z
]z

Φ(x; H)
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Neural Networks

I Stack a few perceptrons to build a fully

connected neural network

I Nonlinearities are pointwise.

⇒ They do not mix components

I Neural networks are not that different from

linear transformations

Layer 1

Layer 2

Layer 3

x0 = x

z1 = H1 x0 x1 = σ
[

z1

]z1

z2 = H2 x1 x2 = σ
[

z2

]z2

z3 = H2 x2 x3 = σ
[

z3

]z3

x1
x1

x1

x2
x2

x2

x3 = Φ(x;H)
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Scalability

Fully connected neural networks do not scale to high dimensional inputs
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Scalability

Convolutional neural networks are used for scalable processing / learning
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Convolutional Neural Networks (CNNs)

To process images...

I Require the linear transformations of all layers

to be Euclidean convolutional filters

Ruiz-Gama-Ribeiro, Graph Neural Networks: Architectures, Stability and

Transferability,

Layer 1

Layer 2

Layer 3

x0 = x

z1 = H1 ? x0 x1 = σ
[

z1

]z1

z2 = H2 ? x1 x2 = σ
[

z2

]z2

z3 = H2 ? x2 x3 = σ
[

z3

]z3

x1
x1

x1

x2
x2

x2

x3 = Φ(x;H)
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Graph Neural Networks (GNNs)

To process graphs and signals on graphs...

I Require the linear transformations of all layers

to be Graph convolutional filters

Ruiz-Gama-Ribeiro, Graph Neural Networks: Architectures, Stability and

Transferability, PIEEE 2021, http://arxiv.org/abs/2008.01767

Layer 1

Layer 2

Layer 3

x0 = x

z1 =

K−1∑
k=0

h1k Sk x x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x1

x2

x2

x2

x3 = Φ(x; S,H)
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Equivariance and Stability to Deformations

I Euclidean and graph convolutional filters leverage signal (data) symmetries

⇒ Translation equivariance for Euclidean filters and permutation equivariance for graph filters

I CNNs and GNNs leverage quasi quasi symmetries better than Euclidean and graph filters

⇒ CNNs are more stable to diffeomorphisms (warping) of Euclidean space

⇒ CNNs are more stable to multiplicative perturbations of the graph

Stéphane Mallat, Group Invariant Scattering, CPAM 2012, http://arxiv.org/abs/1101.2286

Gama-Bruna-Ribeiro, Stability Properties of Graph Neural Networks, TSP 2020, http://arxiv.org/abs/1905.04497
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Algebraic Neural Networks

CNNs and GNNs are particular cases of an abstract algebraic architecture ⇒ AlgNN

I Which includes other known types of convolutional architectures ⇒ Group NNs, Graphon NNs

I And a large number of unexplored architectures

Parada Mayorga-Ribeiro, Algebraic Neural Networks: Stability to Deformations, TSP 2020, http://arxiv.org/abs/2009.01433
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Algebraic Neural Networks: Stability to Deformations

The shared stability properties of CNNs and GNNs relative to deformantions are a

consequence of their shared algebraic structure.

I Which are also shared by other known types of convolutional architectures ⇒ Group, Graphon NNs

I And are also shared by a large number of unexplored architectures

Parada-Mayorga-Ribeiro, Algebraic Neural Networks: Stability to Deformations, TSP 2020, http://arxiv.org/abs/2009.01433
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Algebraic (Convolutional) Signal Processing
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Vector Spaces and Endomorphisms

I Consider a vector space M. Signals (data) are elements x ∈ M

I Associated to M we have the space of endomorphisms End(M)

⇒ The set of all linear maps e from M to M M

x ex

End(M)

e
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Vector Spaces and Endomorphisms

I Signals M = Rn ⇒ Square matrix multiplications ⇒ y = Ex

I Signals in M = L2([0, 1]) ⇒ Linear functionals ⇒ y(u) =

∫ 1

0

E(u, v)x(v) dv

M

x ex

End(M)

e

A. Ribeiro Algebraic Neural Networks: Stability to Deformations 16



Vector Spaces and Endomorphisms

I Signals M = Rn ⇒ Square matrix multiplications ⇒ y = Ex

I Signals in M = L2([0, 1]) ⇒ Linear functionals ⇒ y(u) =

∫ 1

0

E(u, v)x(v) dv

M

x ex

End(M)

e

I End(M) is the set of all linear maps that can be applied to a signal x that lives in M

⇒ Learning in End(M) is not scalable ⇒ Search over All Matrices. Or over all linear functionals
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Scalable Signal Processing

I Scalable learning ⇒ Restrict allowable linear maps

⇒ To those that represent another (more restrictive) algebra

I The representation is defined by a homomorphism

ρ : A→ End(M)

I Map abstract filters a ∈ A into concrete endomorphisms ρ(a)

⇒ Convolutional filters yield outputs ⇒ y = ρ(a)x M

x y = ρ(h)x

End(M)

e = ρ(h)

A

h

ρ
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Algebraic Signal Processing (ASP)

An Algebraic SP model is a triplet (A,M, ρ)

I A is an Algebra with unity where filters h ∈ A live

⇒ It defines the rules of convolutional signal processing M

x y = ρ(h)x

End(M)

e = ρ(h)

A

h

ρ
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Algebraic Signal Processing (ASP)

An Algebraic SP model is a triplet (A,M, ρ)

I M is a vector space

⇒ The space containing the signals x we want to process M

x y = ρ(h)x

End(M)

e = ρ(h)

A

h

ρ
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Algebraic Signal Processing (ASP)

An Algebraic SP model is a triplet (A,M, ρ)
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Algebraic Signal Processing (ASP)

An Algebraic SP model is a triplet (A,M, ρ)

I ρ is a homomorphism from A to the endomorphisms of M

⇒ Instantiates the abstract filter h in the space End(M) M

x y = ρ(h)x

End(M)

e = ρ(h)

A

h

ρ

I Any h ∈ A is a filter which operates on signals according to the homomorphism ⇒ y = ρ(h)x
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Graph Signal Processing (GSP)

I If this sounds complicated it is because of the level of abstraction. But it is in fact very easy

I In GSP signals x ∈ Rn are supported on the nodes of a graph with matrix representation S

I Convolutional filters are polynomials on the matrix representation ⇒ y =
K−1∑
k=0

hkSk x

1

2

3

4

5

6

7

8
x1

x2

x3

x4

x5

x6

x7

x8
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Graph Signal Processing (GSP)
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Convolutions Everywhere

I The purpose of the abstraction is, of course, to make it very general

Graph Signal Processing on a Different Graph

I Change vector space to appropriate graph dimension

I Keep the algebra of polynomials

I Replace the homomorphism to the shift operator of the new graph
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Convolutions Everywhere

I The purpose of the abstraction is, of course, to make it very general

Discrete Time Signal Processing

I Replace the vector space by the space of square summable sequences

I Keep the algebra of polynomials

I Replace the homomorphism to compositions of the translation (time shift) operator
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Convolutions Everywhere

I The purpose of the abstraction is, of course, to make it very general

Image Convolutions

I Replace the vector space by the space of matrices

I Replace the algebra with the algebra of polynomials of two variables

I Replace the homomorphism to compositions of horizontal and vertical translation operators
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Convolutions Everywhere

I The purpose of the abstraction is, of course, to make it very general

Group Convolutions

I Vector space made up of functions supported on the group

I The algebra is the algebra of the group

I The homomorphism is the identity
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Convolutions Everywhere

I The purpose of the abstraction is, of course, to make it very general

Whatever Convolutions

I Square summable functions. Functions on manifolds. Finite fields

I Lie Algebras

I Homomorphism chosen to match algebra to vector space
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Algebraic Neural Networks
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Layers of an Algebraic Neural Networks

I Layers defined by an ASP model ⇒ (A`,M`, ρ`) that specifies the type of convolutional processing

I Add pointwise nonlinearity η` and pooling operator P` to match vector spaces M` and M`+1

(A`,M`, ρ`)

x`−1

y` = ρ`(h`) x z` = η`

[
y`

]
x` = P`

[
z`

]y` z`

x`

I Trainable parameters are the filters h` ⇒ Numerically, we train directly on ρ`(h`)
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Algebraic Neural Networks (AlgNNs)

I Stack several layers to build and AlgNN

(A1,M1, ρ1)

(A2,M2, ρ2)

(A3,M3, ρ3)

x

y1 = ρ1(a1) x z1 = η1

[
y1

]
x1 = P1

[
z1

]y1 z1

y2 = ρ2(a2) x1 z2 = η2

[
y2

]
x2 = P2

[
z2

]y2 z2

y3 = ρ3(a3) x2 z3 = η3

[
y3

]
x3 = P3

[
z3

]y3 z3

x1

x1

x2

x2

x3
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Deformations
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Invariance

I The algebraic models (A`,M`, ρ`) determine the equivariance properties of the Algebraic NN

⇒ Equivariance to translations in CNNs

⇒ Equivariance to permutations in GNNs and Graphon NNs

⇒ Equivariance to actions of the group in Group NNs

I These are properties of the filters that the Algebraic NN inherits

⇒ Algebraic NNs outperform Algebraic filters. Why? ⇒ Stability to Deformations
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Representations and Shift Operators

I To define model deformations we need the notion of generator of an algebra

Generators: The set G ⊆ A generates A if all a ∈ A are polynomial functions of elements of G

Shift Operators: The set S of homomorphism images S = ρ(g) is the set of shift operators

I Definitions of generators and shift operators allows writing filters as polynomials on shift operators

ρ(a) = pM
(
ρ(G)

)
= pM

(
S
)

= p
(
S
)
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Perturbations in Algebraic Signal Models

I We define perturbations of Algebraic models as perturbations of shift operators ⇒ S̃ = S + T(S)

I The ASP model (A,M, ρ) is consequently perturbed to the ASP model (A,M, ρ̃) such that

ρ̃(a) = pM
(
ρ̃(g)

)
= pM

(
S̃
)

That is, the polynomials that define filters are the same. But they use the perturbed shift operator

I Graphs ⇒ Shift operator S represents a graph ⇒ S̃ represents different graph

I Time ⇒ S represents translation equivariance ⇒ S̃ represents quasi-translation equivariance
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Perturbation Model

I We analyze a first order perturbation model of the form ⇒ T(S) = T0 + T1S

I The operators T0 and T1 are compact normal with norms satisfying ‖T0‖ ≤ 1 and ‖T1‖ ≤ 1

I Tr and S do not commute. Write STr = TrS + SPr . and define commutation factor δ = max
r

‖Pr‖
‖Tr‖
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Stability to Deformations
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Stability

Stable Operators: We say operator p(S) is stable if there exist constants C0, C1 > 0 such that

∥∥∥p(S)x− p(S̃)x
∥∥∥ ≤ [C0 sup

S∈S
‖T(S)‖+ C1 sup

S∈S

∥∥DT(S)
∥∥+O

(
‖T(S)‖2

)]∥∥x
∥∥

for all x ∈M and DT(S) denoting the Fréchet derivative of T.

I
∥∥∥p(S)x− p(S̃)x

∥∥∥ is bounded by the size of the deformation. Measured by value and rate of change

I Staility is not a given ⇒ Counter examples in GNN and processing of time signals.
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Lipschitz and Integral Lipschitz Filters

I Filters are polynomials on shift operators ⇒ Isomorphic to polynomials with complex variables

Lipschitz Filter: Polynomial p : C→ C is Lipschitz if ‖p(λ)− p(µ)‖ ≤ L0‖λ− µ‖ for some L0

Integral Lipschitz: Polynomial p : C→ C is Integral Lipschitz if

∥∥∥∥λdp(λ)

dλ

∥∥∥∥ ≤ L1 for some L1

I Restricted attention to algebras with a single generator. Generalizations are cumbersome but ready
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Stability of Algebraic Filters

Stability of Algebraic Filters

A filter that is Lipschitz and Integral Lipschitz is stable∥∥∥p(S)x− p(S̃)x
∥∥∥ ≤ [(1 + δ)

(
L0 sup

S
‖T(S)‖+ L1 sup

S
‖DT(S)‖

)
+O(‖T(S)‖2)

]
‖x‖

I Good news ⇒ Algebraic filters can be made stable to perturbations

I Alas, We either have stability or discriminability. Integral Lipschitz Filter ⇒
∥∥∥∥λdp(λ)

dλ

∥∥∥∥ ≤ L1

I Commutativity factor affects stability constant but does not generate instability
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Stability of Algebraic Neural Networks

Stability of Algebraic Filters

Let Φ`(S, x) and Φ`(S̃, x) be the operators associated with layer ` of an Algebraic NN. If the layer
filters are Lipschitz and Integral Lipschitz,∥∥∥Φ`(S, x)− Φ`(S̃, x)

∥∥∥ ≤ [(1 + δ)

(
L0 sup

S
‖T(S)‖+ L1 sup

S
‖DT(S)‖

)
+O(‖T(S)‖2)

]
‖x‖

I Good news ⇒ Algebraic NNs can be made stable to perturbations. It’s the same bound

I Individual layers loose discriminability. Integral Lipschitz Filter ⇒
∥∥∥∥λdp(λ)

dλ

∥∥∥∥ ≤ L1

I Nonlinearity mixes frequency components ⇒ Recover discriminability in subsequent layers
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Frequency Representations
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Frequency Representation of an Algebraic Filter

Definition (Frequency Representation)

In an algebra A with generators gi ∈ G we are given the filter h expressed as the polynomial

h =
∑

k1,...kr

hk1,...,kr g1
k1 . . . gr

kr = pA(G)

The frequency representation of h over the field F 1 is the polynomial function with variables λi ∈ L

h̃(L) =
∑

k1,...kr

hk1,...,kr λ1
k1 . . . λr

kr

1 The field is unspecified in the definition. But unless otherwise noted F refers to the field over which the vector space M is defined
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Frequency Representation of an Algebraic Filter

I Frequency representation ≡ polynomial over the field. ⇒ E.g., a function over the reals

I It is decoupled the homomorphism. From the shift operator that specifies actions on x

λ

h̃(λ)

A. Ribeiro Algebraic Neural Networks: Stability to Deformations 47



The Effect of the Graph

I Shift S has eigenvalues λi ⇒ The response is instantiated at these eigenvalues h̃(λi ) =
∞∑
k=1

hkλ
k
i

I Shift Ŝ has eigenvalues λ̂i ⇒ The response is instantiated at these eigenvalues h̃(λ̂i ) =
∞∑
k=1

hk λ̂
k
i

λ

h̃(λ)
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Relative Perturbations of a Shift Operator

I Conceptually, we can learn all there is to be learnt from shift operator dilations ⇒ Ŝ = S + εS

I Eigenvalues dilate λi → λ̂i = (1 + ε)λi . Frequency response instantiated on dilated eigenvalues

λl λm λhλl λm λh λ

h̃(λ)

λl λm λhλ̂l λ̂m λ̂h
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Higher Frequencies are More Difficult to Process

I Large eigenvalues move more. Signals with high frequencies are more difficult to process

⇒ Even small perturbations yield large differences in the filter values that are instantiated

⇒ We think we instantiate h
(
λi

)
⇒ But in reality we instantiate h

(
λ̂i

)
= h

(
(1 + ε)λi

)

λl λm λhλl λm λh λ

h̃(λ)

λl λm λhλ̂l λ̂m λ̂h
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Stability Requires Integral Lipschitz Filters

I To attain stable algebraic signal processing we need integral Lipschitz filters ⇒
∣∣λh̃′(λ)

∣∣ ≤ C

I Either the eigenvalue does not change because we are considering low frequencies

I Or the frequency response does not change when we are considering high frequencies

λl λhλl λh λ

h̃(λ)

λl λhλ̂l λ̂h
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Discriminative Filter at Low Frequencies

I At low frequencies a sharp highly discriminative filter is also highly stable

⇒ Ideal response h
(
λl

)
is very close to perturbed response h

(
λ̂l

)
= h

(
(1 + ε)λl

)

λlλl λ

h̃(λ)

λl λ̂l
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Discriminative Filter at Medium Frequencies

I At intermediate frequencies a sharp highly discriminative filter is somewhat stable

⇒ Ideal response h
(
λm

)
is somewhat close to perturbed response h

(
λ̂m

)
= h

(
(1 + ε)λm

)

λmλm λ

h̃(λ)

λm λ̂m
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Discriminative Filter at High Frequencies

I At high frequencies a sharp highly discriminative filter is unstable. It becomes useless

⇒ Ideal response h
(
λh

)
is very different from perturbed response h

(
λ̂h

)
= h

(
(1 + ε)λh

)

λhλh λ

h̃(λ)

λh λ̂h
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Discriminative Filter at High Frequencies

I We can have stability to deformations if we use an integral Lipschitz filters ⇒
∣∣λh̃′(λ)

∣∣ ≤ C

⇒ But this precludes the discrimination of high frequency components

µh λhµh λh λ

h̃(λ)

µh λhµ̂h λ̂h
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Pointwise Nonlinearities are Frequency Mixers

I Nonlinearities σ(vi ) and σ(vj) spread

energy across all frequencies

I Some energy where it used to be

I Some energy at other high frequencies

I Some energy at medium frequencies

I Some energy at low frequencies

I Where it can be discriminated with a

stable filter in Layer 2

Spectrum of nonlinearity applied to vi ⇒ VHσ(vi )

λiλiλi λ̂i

Spectrum of nonlinearity applied to vj ⇒ VHσ(vj )

λjλjλj λ̂j
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Stability vs Discriminability Tradeoff of GNNs

Stability Properties of Algebraic Neural Networks

AlgNNs can be simultaneously discriminative and stable to deformations. Algebraic filters cannot.
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Stability vs Discriminability Tradeoff of GNNs

Stability Properties of Algebraic Neural Networks

For the same sensitivity to deformations, AlgNNs are more discriminative than algebraic filters
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Closing Comments
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Algebraic Neural Networks (AlgNNs)

I Provide a common language for Convolutional-, Graph-, Graphon-, Group-, Unknown- NNs

I Uncover a shared stability vs discriminability tradeoff that stems from a shared algebraic structure

⇒ Algebraic linear filters can be either stable OR discriminative. But not both

⇒ Algebraic neural networks can be both, stable AND discriminative

I Theory wishlist: Nonconmmutative algebras. Banach Algebras

I Application wishlist: Lie Algebras. Manifolds. Markov Random Fields
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If you thought that this was interesting

I arxiv.org/abs/2009.01433

⇒ Algebraic Neural Networks: Stability to Deformations A. Parada Mayorga and A. Ribeiro

I gnn.seas.upenn.edu

⇒ Video and scripts for our course on graph neural networks at Penn. Lecture 12

I aribeiro@seas.upenn.edu and alejopm@seas.upenn.edu

⇒ Send us an email if you have questions or ideas
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