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For many problems one needs to minimize an objective (`Loss’) function V, 
descending a generally non-convex high dimensional landscape.

--data analysis/machine learning
-- PDE solving,  Loss = ଶ ଶ:   want global min

Gradient descent methods and variants can work well w/modern tweaks, 
but sometimes get stuck and/or don’t sample all desired solutions.

Early U cosmology:  models for 
descending a potential landscape V.
--Example: DBI: relativistic speed limit 

as without friction, consistent 
with energy conservation  calculability
cf Relativistic Gradient Descent Franca et al ‘19 (with constant speed limit)



Schematic of NN’s for PDE solving  Lagaris, Likas, Fotiadis ‘97,…, 

Repeated application builds up nonlinear 
output functions/ansatzes

Points sampled from 
domain of PDE

Then form loss functional: e.g.
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Output functions (ansatzes for
functions being solved for)

Descend the loss landscape via gradient 
descent or generalizations

Also ML beyond classical PDEs:  QFTs



Early Universe theory:



Large-scale structure (LSS) also carries imprint of primordial fluctuations, 
requiring new insights to disentangle from nonlinear evolution (role for ML 
under current discussion/debate).  Standard approach:  EFT of large-scale 
structure Senatore et al (many works and leading constraints)

ML approaches include:



Early Universe inflation requires nearly constant 

• Slow roll (flat potential, Hubble friction dominates)
• Interactions slow the field, e.g. DBI inflation: speed limit -dependent

Testable (falsifiable(?)) via 
non-Gaussianity
( equilateral shape)

Planck

Distinct behavior and predictions from slow roll 



Non-gravitational 
version conserves 
energy (no friction), 
only stopping at V=0

Phase space volume strongly dominated near global minimum:

 Cannot stop at local min, even 
without stochastic noise (but 
can get stuck in orbit).  
Cannot overshoot V=0.  
Faster in shallow valleys.Distinct behavior from gradient descent 



Many variations on this theme, e.g. 

• `Log inflation’ mechanism with log rather than square root
branch cut  speed limit.  From integrating out flavor fields:

• 2-derivative action with mass ~ 1/Loss

(w/Mathis, Mousatov, Panagopoulos ‘20):



As an energy conserving dynamical system in a rich loss landscape (without 
symmetries), BI can easily be chaotic, with random initialization avoiding stable orbits.  

But if a particular problem (NN & Loss function) leads to long-lived orbits, we can add 
extra features to the algorithm (as in chaotic billiards problems) to stimulate faster 
mixing 
Toy Example:    𝟐 𝟐 ,   

With added feature (unstuck):Original problem (stuck in orbit):



Our redshifted BI 
dynamics is a bit like 
galactic dynamics, 
solar system, … 
where chaos (as well 
as long lived orbits) 
is familiar.

We add elements 
aimed at ensuring 
rapid mixing.

(Manos and Machado MNRAS ‘14).  



Adding dispersing elements, (e.g. billiards or negative curvature)  supports 
mixing (decay of correlations) 

After some time, for a particle in a droplet and phase space region R, 

(>ergodicity: ௧ ௣௛௔௦௘ ௦௣௔௖௘)





BI algorithm:

Underlying discrete 
dynamics:

Plus:
• Initialization:  option for E > V(t=0)
• E conservation enforced throughout (by rescaling 

of 
• Option:  not enough progress down V => bounces: 

• Option:  user defined intervals => bounces 
regardless of progress (to help trajectories 
rapidly mix)  



Measure in different regions gives predicted distribution over all solutions (given 
mixing):

V<< E:  

Near minima:

We can check this distribution using our discretized algorithm:



Theory:

Experiment:

Agreement within 10%.



On our PDE, the BI optimizer solves the PDE (finding multiple solutions)

BI

1d slice of domain

Second solution:



• The measure formula prefers flatter minima (lore that generalize better?):

• BI faster on shallow valleys than GD:   shallow direction       
ଵ
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Zakharov function (benchmark): shallow valley  

d=10 Zakharov



These statements persist with noise (mini-batches) in our prescription, 
more below…



BBI Trajectory (2d Ackley Function):

Hyperoptimized fixed lr, and for GDM also momentum.  
GDM either stuck in initial basin or helped out by `catapult’ 
mechanism Lewkowycz et al ‘20, , then more erratic (not settling 
in global minimum).   BBI bounces around and settles in 
global minimum.



Rastrigin function 
(non-convex test function for optimization)

n=5, following hyper-parameter optimization

GD may be helped by `catapult’ mechanism 
Lewkowycz et al ‘20, .  But it appears less 
predictable (bounces out of  the basin of  the 
minimum [without lr decay tweak]):



400-dimensional Rastrigin function + ଼

(non-convex test function for optimization)



Noisy case (mini-batches):
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Time dependent potential (nonetheless we renormalize to the original E).
One can think of a given batch trajectory as deterministic.
Retains the main features:

• Cannot stop at local minimum (V>0)
• Will stop near global minimum due to speed limit

Also interesting to study ensemble averages, generalized Brownian motion:



Discrete Fluctuation-Dissipation relations generalizing Yaida ’18 (SGD+momentum)

Careful continuum limit with noise:

No friction term

Contrast to SGD+momentum: 
e.g. Kunin Sagastuy-Brena, Gillespie, Tanaka, Ganguli, Yamins ‘21



Late-time Brownian motion (preliminary)

Normally ( somewhat like in SGD-momentum):     ୢ ఏమ

ௗ௧
ଶ

BI:      …+ d ఏమ

ௗ௧
ଶ (speed limit)

BI explores the landscape in a very different way, with or without noise. 

Distinctive behavior with respect to local and global minima persists with 
noise.



Cifar image data set (all optimizers work)



Generalization: Might naively expect overfitting given that BI doesn’t 
strictly stop until .  

ଶ in speed-limited regime, stalls before literally 

The basic MNIST/Cifar examples, as well as PDE’s, illustrate 
generalization ability as robustness to minibatch-induced noise. 

More interesting problems require feature learning (larger-scale 
examples are in progress)

Modest (~50) statistics and 
limited hyper-parameter tuning 
(without all the tweaks on either 
side); just a check of basic 
competence.  Bouncing not 
required here.



Feature Learning and BBI (in progress)

To Do/in progress: larger experiments including those requiring feature learning 
(recommendations?).  ImageNet and variants in progress modulo resource requirements.

Theory/intuition:  Chaos (with or without bounces) => diverging trajectories => feature 
learning even for `standard’/NTK initialization choices.  cf Roberts/Yaida (criticality, large-width RG and 
minimal models), Yang/Hu (initialization enhancing hidden updates)

Compared to situation with hidden layers not updating ( SGD at infinite width with NTK 
initialization), our chaotic dynamics contains diverging trajectories introducing ௛௜ௗௗ௘௡



Application to PDEs in new mechanism for ୡ୭ୱ୫୭ିୡ୭୬ୱ୲ from string theory  
(w/G.B. De Luca, G. Torroba ‘21),   cf e.g.

M theory (EFT:  11d SUGRA) on finite-volume hyperbolic 
space with small systole, automatically-generated Casimir 
energy, 7-form flux yields immediate volume stabilization. 

Strong positive Hessian 
contributions from hyperbolic 
rigidity and from warping
(redshifting) effects on 
conformal factor and on Casimir 
energy.



4d effective potential 
Douglas ‘09

u(y) satisfies GR constraint (its equation of motion): 

Like a Schrodinger 
problem for 

ଶ ଶ ଶ



warmup example:

Loss 

Slice of approximate  
solution for warp and 
conformal factors



Numerical study of this class of compactifications is fully specified 
and well-posed, including the stress-energy sources relevant for dS:

• explicit projection of  , can also be constructed as 
gluing of  explicit set of  polygons. 

• Casimir energy
• solution explicit in terms of  metric
• Parametric limit(s) involving covers and filled cusps to 

compare to.

For ML, can consider PDE’s, , or slow roll functionals as 
natural loss functions to explore. 



={W, b}  

Summary:

BI for AI
(et al)

• Energy-conserving dynamics (no friction),yet slows as Loss , cannot 
overshoot V=0, cannot get stuck in local minimum, faster in shallow valleys

• If mixing (>>ergodic), spends large fraction of time near ଶ in phase 
space and captures multiple solutions (including learned features) according to 
predictive formula.

So far, spent few resources (in defining and testing the algorithm and theory).  
Future/ongoing:  apply to scientific-data ML (e.g. large-scale structure?), higher-
dimensional PDEs, other data sets (e.g. ImageNet and language models).

+ bounces


