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Farly Universe models as optimization algorithms

With G. B. De Luca arXiv:2201.11137 [c¢s.LG] & Ongoing

https://github.com/ghdl/BBI

Offshoot of discussions w/ J. Batson, Y. Kahn, D. Roberts on inflation and optimization;
+early/intermediate collaboration with G. Panagopoulos, Thomas Bachlechner




For many problems one needs to minimize an objective ('Loss’) function V,
descending a generally non-convex high dimensional landscape.

--data analysis/machine learning
-- PDE solving, Loss =Y (PDEs)? + (boundary conditions)?: want global min

Gradient descent methods and variants can work well w/modern tweaks,
but sometimes get stuck and/or don’t sample all desired solutions.

Early U cosmology: models for
descending a potential landscape V.
--Example: DBI: relativistic speed limit
— 0 as VV — 0 without friction, consistent
with enerqy conservation = calculability

cf Relativistic Gradient Descent Franca et al ‘19 (with constant speed limit)




Schematic of NN’s for PDE solving Lagaris, Likas, Fotiadis '97,..,

Input Hidden Output
layer layers layer

Points sampled from,_ | Output functions (ansatzes for

domain of PDE functions being solved for)
\N ) Repeated application builds up nonlinear
0 \N‘\X + / output functions/ansatzes
3 (NN parsmeters )
Then form loss functional: e.g. dwte as 0 (N pa s

Descend the loss landscape via gradient
z (PDEs)? + (boundary conditions)?  descent or generalizations

pts,eqs . ]
P. de Haan, C. Rainone, M.C.N. Cheng and R. Bondesan, Scaling Up Machine Learning For Quantum
Field Theory with Equivariant Continuous Flows, 2110.02673.

Also ML beyond classical PDEs: QFTs

J. Halverson, Building Quantum Field Theories Out of Neurons, 2112.04527.



Early Universe theory:

Inflation, accelerated expansion e.g. driven by
scalar field potential energy V(9)

quantum
fluctuations
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Amplitude fixed by uncertainty principle:
o ~H

Quantum fluctuations from inflaton field as
seeds for stucture fits data well: small spectral

tilt as expected as H(t) decreases slowly;
super-horizon at CMB formation

oOT 6T > CMB temperature
uctuations (and polarization, lensing)
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Fig. 1. Planck 2018 CMB angular power spectra, compared with the base-ACDM best fit to the Planck TT.TE, EE+]nwE+]eming
data (blue curves). For each panel we also show the residuals with respect to this baseline best fit. Plotted are Dy = £(£ + 1)C;/(2n)
for TT and TE, C; for EE, and L*(L + I)ZC‘”/(27!) for lensing. For T'T, TE, and EE, the multipole range 2 < £ < 29 shows the
power spectra from Commander (TT} and SxmAll (TE, EE), while at £ > 30 we display the co-added frequency spectra computed
from the P1ik cross-half- lihood, with d and other nuisance parameters fixed to their best-fit values in the
base-ACDM cosmology. For lhe Planck lensing potential angular power spectrum, we show the conservative (orange dots; used in
the likelihood) and aggressive (grey dots) cases. Note some of the different horizontal and vertical scales on either side of £ = 30
for the temperature and polarization spectra and residuals.




ML approaches include:

TIME = NOW
DARK AGES

1 BILLION YEARS . . . . . . . .

M. Biagetti, A. Cole and G. Shiu, The Persistence of Large Scale Structures I: Primordial

non-Gaussianity, JCAP 04 (2021) 061 [2009.04819].

M. Schmittfull, T. Baldauf and M. Zaldarriaga, Iterative initial condition reconstruction, Phys. Rev. D
96 (2017) 023505 [1704.06634].

P.L. Taylor, T.D. Kitching, J. Alsing, B.D. Wandelt, S.M. Feeney and J.D. McEwen, Cosmic Shear:
Inference from Forward Models, Phys. Rev. D 100 (2019) 023519 [1904.05364].

B. Dai and U. Seljak, Learning effective physical laws for generating cosmological hydrodynamics with
Lagrangian Deep Learning, 2010.02926.

C. Modi, F. Lanusse and U. Seljak, FlowPM: Distributed TensorFlow implementation of the FastPM
cosmological N-body solver, Astron. Comput. 37 (2021) 100505 [2010.11847].

Fg';'::;iﬁ” C. Modi, F. Lanusse, U. Seljak, D.N. Spergel and L. Perreault-Levasseur, CosmicRIM : Reconstructing

Early Universe by Combining Differentiable Simulations with Recurrent Inference Machines,

QUARK SOUP, EMISSION ACCELERATING
OF COSMIC RADIATION EXPANSION 2104.12864.

5.7 BiiION VEARS T.L. Makinen, T. Charnock, J. Alsing and B.D. Wandelt, Lossless, scalable implicit likelihood inference
for cosmological fields, JCAP 11 (2021) 049 [2107.07405].

S. Hassan et al., HIFlow: Generating Diverse HI Maps Conditioned on Cosmology using Normalizing

CMB streams to us from when atoms ~ #ow 2u0-028.

f()]"med_ It Carries imprint Of density f iiaescusa-ia\/arro ei (Li fu}ltzfield C'of'rn;logf wzti lz)‘lrtzﬁ(;'z‘ul I;teilzg;ence, 210[9.(?97[47(.]0 r
<. Villaescusa-Navarro et al., Robust marginalization of baryonic effects for cosmological inference at

fluctuations that originate earlier. o falf el 2109, 1050,

A. Cole, B.K. Miller, S.J. Witte, M.X. Cai, M.W. Grootes, F. Nattino and C. Weniger, Fast and
Credible Likelihood-Free Cosmology with Truncated Marginal Neural Ratio Estimation, 2111.08030.

Large-scale structure (LSS) also carries imprint of primordial fluctuations,
requiring new insights to disentangle from nonlinear evolution (role for ML
under current discussion/debate). Standard approach: EFT of large-scale
structure Senatore et al (many works and leading constraints)



Early Universe inflation requires nearly constant V' (¢)

* Slow roll (flat potential, Hubble friction dominates)
* Interactions slow the field, e.g. DBI inflation: speed limit ¢-dependent

Testable (falsifiable(?)) via
.| e \b2 non-Gaussianity
S = - ]d T4\ o T AV(9) o (=~equilateral shape)

fRBL = 14 + 38 Planck

N
§o

fuorl = 0.9 £5.1; £ = =26 +47; and fyr™ = -38 + 24 (68 % CL, statistical)

Distinct behavior and predictions from slow roll




Non-gravitational

version conserves 5»2 oL 6.
energy (no friction), [ / V(@") 1 — _ APy T &
only stopping at V=0 \ V(6) Y
Vv — Cannot stop at local min, even
H = = = VV(V +72) = E = constant without stochastic noise (but
1-Z can get stuck in orbit).
Cannot overshoot V=0.

Distinct behavior from gradient descent Faster in shallow valleys.

Phase space volume strongly dominated near global minimum:

n—2

Vol(M) = FZ(Z/; / "0 [ di7"6(\V(V + 72) — E)= F2(79T://;) f dngg (E72 N V) N




Many variations on this theme, e.g.

* "Loginflation’ mechanism with log rather than square root
branch cut €-2 speed limit. From integrating out flavor fields:

2

. Ny [Mov @'k /M3
Pier = [ o {50043 +5 00" VoAV -5 [ e (1,%/_ )

(w/Mathis, Mousatov, Panagopoulos ‘20):

e 2-derivative action with mass ~ 1/Loss



As an energy conserving dynamical system in a rich loss landscape (without
symmetries), Bl can easily be chaotic, with random initialization avoiding stable orbits.

But if a particular problem (NN & Loss function) leads to long-lived orbits, we can add
extra features to the algorithm (as in chaotic billiards problems) to stimulate faster
mixing

Toy Example: —Viu+u? = f, 1= % (3 — 4(1 + 6400(27 + #3)) cos(40(a7 + 23)) + cos(80(a7 + 23)) — 640sin(40(a7 + 23)))

Original problem (stuck in orbit): With added feature (unstuck):

6.28 - d 42 --optimizer bigamma --Ir 0.00005 --gamma 1e-6 --name BI_prok

[] —-«= logl0(loss)
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Our redshifted BI
dynamics is a bit like
galactic dynamics,
solar system, ...
where chaos (as well
as long lived orbits)
is familiar.

We add elements
aimed at ensuring
rapid mixing.

Chaos and dynamical trends in barred galaxies 2209
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(Manos and Machado MNRAS ‘14).

Figure 5. The Poincaré Surface of Section defined by x = 0, p, > 0 with H = —0.19, for three typical orbits (two regular and one chaotic) being integrated
for 10 Gyr. The set of parameters for the bar, disc and halo components are chosen from the fits with the 3-d.o.f. TD Hamiltonian at = 7.0 Gyr of the N-body
simulation. In the insets, we depict their projection on the (x, y)-plane together with the GALI> and MLE o evolution in time (see Table 1 for the exact
parameters and text for more details on these trajectories).



E. Dong, M. Yuan and S. Du et al. /Applied Mathematical Modelling 73 (2019) 40-71 55

Figure 2. Illustration of the trajectory sensitivity to the initial X y z
conditions in a billiard model with convex borders (a) Transient quasi-periodic for 7 € [0,50] (red) and conservative hyperchaotic orbit for ¢ € [50,100] (blue);

Adding dispersing elements, (e.g. billiards or negative curvature) supports
mixing (decay of correlations)

After some time, for a particle p in a droplet and phase space region R,

Prob(p € R) < Vol(R)

(>er80diCitYi <f>t — (f)phase space)






BI algorithm:
0:(t + At) — 0;(t) = At m(t+A) V(e())

Underlying discrete Wd#%AU—%ﬂU::—A#M“FN”NELFK)

dynamics: 2 ¥ B
VV(IV+72)=E

Plus:

* Tnitialization: option for E > V(t=0)
* E conservation enforced throughout (by rescaling

of II)
* Option: not enough progress down V => bounces:
[I - (Random Rotation) * I1
* Option: user defined i1ntervals => bounces

regardless of progress (to help trajectories
rapidly mix)



Measure in different regions gives predicted distribution over all solutions (given
mixing):

Qﬂ-n/z n—1 n —-n/z
Vol(Mz) = E d"(6 — 6,)V
V<< E: F(R/Z)
o V ~Vi+ % Z mi;(0; — 0r;)° nir = mi(0; — 0p;) =V = Vi + % ZUi
Near minima: i=1 i1

2
:)ﬂ_n./‘z 1 ‘ ‘)ﬂn/z En—1 nnﬁl
Vol(M — d™ V—n/z — / d 7 ‘
) L(n/2) I1; mun f & ( I'(n/2) [ I, mu - (V1 + %?]2)"‘/2

, ; 271_71./2 En—1 | ] l
Vol(Mz) — by T2 ) TLmn log(Vy) Vi— 0, fixedn

We can check this distribution using our discretized algorithm:



V = —exp (—0.4|z — z1]*) —(1—€)exp (—0.8|x — 22|*) +10 73|z —z1 |*|z—z2|*+1
(2)

Theory:

Vol(M1) e
= — ~1.93
Vol(Ms3) e

Experiment:

0 500 1000 1500 2000 2500 3000 3500 4000

Figure 4: Partial ratios.

(a) The potential with two basins (b) A small sample of trajectories
of Eq. (2)

Agreement within 10%.



On our PDE, the Bl optimizer solves the PDE (finding multiple solutions)

(3 — 4(1 + 6400(x3 + x3)) cos(40(z7 + z3)) + cos(80(z + #3)) — 640sin(40(zF + 23)))

e

Autu?2=f =z f=
Bl

d 42 --optimizer bigamma --Ir 0.00005 --gamma 1e-6 --name BI_prok

-+~ logl0(loss)
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* The measure formula prefers flatter minima (lore that generalize better?):

log(Vr) Vi —0, fixedn

271_71/2 4 En—1
I'(n/2) | I, mmn

V()Z(MI) — bn, (

« Bl faster on shallow valleys than GD: shallow direction V = %mZHZ, m— 0

N S

O] <VV ~VO-VV smh, @~e ™ (;):_f - © ~e ™!




Zakharov function (benchmark): shallow valley

; d=10 Zakharov

d d 2 d
fox)=Y ai+ | 05z | +|) 0.5z

i=l =1 i=1
10° — gd-p
bbi
10°
X 100
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ECD FrIiCcTION ((S)GDM, ...)

CONSERVES ENERGY E FRICTION DRAINS E
CANNOT GET STUCK CAN STOP IN HIGH
IN HIGH LOCAL MINIMUM LOCAL MINIMUM
CANNOT OVERSHOOT CAN OVERSHOOT
V=0=VV ¥V =0=5N¥
DEPENDS ON V AND VV  DEPENDS ONLY ON VV
ON SHALLOW REGION: ON SHALLOW REGION:
§oce™YE () Broe™ Y (6)
ANALYTIC PREDICTION STOCHASTIC INTUITION
FOR DISTRIBUTION FOR DISTRIBUTION
(GENERALIZES (GENERALIZES

These statements persist with noise (mini-batches) in our prescription,
more below...



BBI Trajectory (2d Ackley Function):

F(01,05) = —20exp [—0.2\/0.5 (67 + 9%)} H

—exp [0.5 (cos 27y + cos 2mwls)] + e + 20.

10t

10°
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10-2

1073

1074

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration

GDM —— GDM - small stepsize . BBI

Hyperoptimized fixed Ir, and for GDM also momentum.
GDM either stuck in initial basin or helped out by "catapult’
mechanism Lewkowycz et al ‘20, , then more erratic (not settling
in global minimum). BBI bounces around and settles in
global minimum.




Rastrigin function Fx) = An+ 37 [a? — Acos(2ra)]
(non-convex test function for optimization) i=1

,“ ho st . "‘“‘ ' n=5, following hyper-parameter optimization

Y Ve
W“' ' w
— gd-p

— bbi

10*

GD may be helped by "catapult’ mechanism w0
Lewkowycz et al 20, . But it appears less
predictable (bounces out of the basin of the

107!

minimum [without Ir decay tweak]): 10
10* § 102
10° §

107*
107! 1§
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Lk [I—— |
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10°% 1§
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400-dimensional Rastrigin function + ex® f(x) = An + zn: (22 — Acos(2nz;)]
(non-convex test function for optimization) i=1

" run experiment-Rastrigin-BI-CMP.py
. A A L) .
M“. Y 4., 100% | NI | 1200/1000 [00:12<00:00, 77.85trial/s, best loss: 6904.38975291786]
. f“‘ 100% | |INEEEEEMN | 1000/1000 [00:09<00:00, 106.06trial/s, best loss: 2.3484389537518e-08]

‘A_“.mv‘d ey
— MI./ : Best parameters

CM_p: {'gamma': 1.8946762796055006, 'stepsize': 0.07000604163714612}
bigamma: {'gamma': 2.5488927707048213e-06, 'stepsize': ©.9009999976086160324}

10° — o
bigamma
10° A
I
10° 1
10-2 4
107% 1

T

0 1000 2000 3000 4000 5000



Noisy case (mini-batches):

ve(),t) = 2 VB({x}B,H%t), Ve = 2 VB e.g.VE>0VB
B

\l__ﬂ——’ {x}B

Time dependent potential (nonetheless we renormalize to the original E).
One can think of a given batch trajectory as deterministic.
Retains the main features:

e (Cannot stop at local minimum (V>0)
* Will stop near global minimum due to speed limit

Also interesting to study ensemble averages, generalized Brownian motion:



Discrete FlUCtuation'DiSSipation relations generalizing Yaida ‘18 (SGD+momentum)

Ar5 B
19056 = (%6
: (VB)Q
(V(OIL; + 0,IL;) ) = AtE(Z(d@VﬁjJrajVﬁ,;)—H 7 L))
. . . fixed €

Careful continuum limit with noise: iy o

K‘.{s(é 'Q
. O - vV : AVB
0; = ——av + 04 = GiZB:(S(t—tB)(l—)\(AVB)+ )

b s + O(At
+bounces + ( ) — MAVp) is of order AVp/Vp when this ratio is small.

No friction term

At
Contrast to SGD+momentum: 2

e.g. Kunin Sagastuy-Brena, Gillespie, Tanaka, Ganguli, Yamins 21

—(1+8)0+(1—-poe=-0VE

Vg1 — Bop = =0V,  Opp1 — O = At v



Late-time Brownian motion (preliminary)
o d(6?) )2
Normally (=somewhat like in SGD-momentum): 0 & (0°)
_ (62) Y. .
BI: ..+ d? ~ (6°) <V (speed limit)

BI explores the landscape in a very different way, with or without noise.

Distinctive behavior with respect to local and global minima persists with
noise.



Cifar image data set (all optimizers work)

The CIFAR-10 dataset
Loss and Accuracy for CIFAR10
The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, w

timizer bigamma --Ir 0.0001 --gamma le-6 --name BI_cifar_Irle-3 --epock

The dataset is divided into five training batches and one test batch, each with 1
training batches contain the remaining images in random order, but some traini - test

contain exactly 5000 images from each class. 2.25- - train - 0.8
Here are the classes in the dataset, as well as 10 random images from each: 2.00 -
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Modest (~50) statistics and
DATA SET SGD BBI limited hyper-parameter tuning

(without all the tweaks on either
MNIST 99.166 , 98.160 99.177 , 99.190

side); just a check of basic

CIFAR-10 92.628 , 92.655 92.434 , 92.435 competence. Bouncing not

required here.

Generalization: Might naively expect overfitting given that BI doesn’t
strictly stop until V = 0.

62 ~ V in speed-limited regime, stalls before literally V = 0

The basic MNIST/Cifar examples, as well as PDE’s, illustrate
generalization ability as robustness to minibatch-induced noise.

More interesting problems require feature learning (larger-scale
examples are 1in progress)



Feature Learning and BBI (in progress)

To Do/in progress: larger experiments including those requiring feature learning
(recommendations?). ImageNet and variants in progress modulo resource requirements.

Theory/intuition: Chaos (with or without bounces) => diverging trajectories => feature

learning even for "standard’/NTK initialization choices. cfRoberts/yaida (criticality, large-width RG and
minimal models), Yang/Hu (initialization enhancing hidden updates)

Compared to situation with hidden layers not updating ( SGD at infinite width with NTK
initialization), our chaotic dynamics contains diverging trajectories introducing A6y;q4en



Application to PDEs in new mechanism for A;ysmo-const from string theory

«
(W/GB De Luca, G. TorrOba 2 1); Cf €.g. L.B. Anderson, M. Gerdes, J. Gray, S. Krippendorf, N. Raghuram and F. Ruehle, Moduli-dependent
Calabi-Yau and SU(3)-structure metrics from Machine Learning, JHEP 05 (2021) 013 [2012.04656].

M.R. Douglas, S. Lakshminarasimhan and Y. Qi, Numerical Calabi-Yau metrics from holomorphic

networks, 2012.04797.
e g

V. Jejjala, D.K. Mayorga Pena and C. Mishra, Neural Network Approximations for Calabi-Yau
Metrics, 2012.15821.
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@ M theory (EFT: 11d SUGRA) on finite-volume hyperbolic
space with small systole, automatically-generated Casimir
energy, 7-form flux yields immediate volume stabilization.
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Douglas ‘09
4d effective potential net cuvvature :

tevm o8
/‘v\/\ }u Pc{R‘) ')'
@, J Ay oD (-RM -3 (%2)* | - L rCont \F | ?)
Veff[g 06] — 2G2 fd7ymu|c
ds® = €2A(y)d , T e2BW) (gH@'j + hz’j)dyidyj u(y) = 24W)

u(y) satisfies GR constraint (its equation of motion):

2 @ _ Ly prcu )) ¢ LikeaSchrodinger
( ViTg ( f 4€“T |F7| “~7%6  problem for
) Cf? ~ H*¢* < 1

G Bl
) V== el

GnN




H; warmup example:

v Free

~— log;o(MSE bc 1)
l0g10(MSE bc 2)

100 200 300 400

— logyo(MSE eq 1)
10010(MSE eq 2)

bc-

Slice of approximate
solution for warp and
Loss conformal factors



Numerical study of this class of compactifications is fully specified
and well-posed, including the stress-energy sources relevant for dS:

* H, /T explicit projection of H-, can also be constructed as
gluing of explicit set of polygons.

* [' =>Casimir energy

* F, solution explicit in terms of metric

» Parametric limit(s) involving covers and filled cusps to
compare to.

For ML, can consider PDE’s, V,¢¢, or slow roll functionals ey, ny as
natural loss functions to explore.



Summary:

BI for Al
(et al)

= /Loss(@)d 1—

i
Loss(

—

)

6 ={W, b}

+ bounces

* Energy-conserving dynamics (no friction),yet slows as Loss — 0, cannot
overshoot V=0, cannot get stuck in local minimum, faster in shallow valleys

* If mixing (>>ergodic), spends large fraction of time near 62 =~ Loss = 0in phase
space and captures multiple solutions (including learned features) according to
predictive formula.

So far, spent few resources (in defining and testing the algorithm and theory).
Future/ongoing: apply to scientific-data ML (e.g. large-scale structure?), higher-
dimensional PDEs, other data sets (e.g. ImageNet and language models).



