
Tess Smidt
2018 Alvarez Fellow
in Computing Sciences

Neural networks with Euclidean Symmetry
for the Physical Sciences

Physics ∩ ML
2020.11.18

SLIDES: https://tinyurl.com/e3nn-physics-meets-ml

Tess Smidt
2018 Alvarez Fellow
in Computing Sciences

All I wanted was 3D rotation equivariance
and I got...

....geometric tensors, space groups, point
groups, selection rules, normal modes,
degeneracy, 2nd order phase transitions, and
a much better understanding of physics.

Neural networks with Euclidean Symmetry
for the Physical Sciences

Physics ∩ ML
2020.11.18

SLIDES: https://tinyurl.com/e3nn-physics-meets-ml

3

The laws of physics have rotational, translational,
and (unless you’re a particle physicist) parity symmetry.

We want machine learning models that also obey this symmetry.

e.g. a network is our model of “physics”. The input to the network is our system.

q

B q

q q

q

4

Symmetry emerges when different ways of representing something “mean” the same thing.
Symmetry of representation vs. objects

5

Euclidean symmetry, E(3):
Symmetry of 3D space
The freedom to choose your coordinate system

Symmetry emerges when different ways of representing something “mean” the same thing.
Symmetry of representation vs. objects

Euclidean symmetry, E(3):
Symmetry of 3D space
The freedom to choose your coordinate system

3D Translation

3D Rotation

3D Inversion

Mirrors

We transform
between
coordinate
systems with...

Symmetry emerges when different ways of representing something “mean” the same thing.
Symmetry of representation vs. objects

7

Euclidean symmetry, E(3):
Symmetry of 3D space
The freedom to choose your coordinate system

Symmetry of geometric objects
Looks the same under specific rotations,
translations, and inversion (includes mirrors).

Symmetry emerges when different ways of representing something “mean” the same thing.
Symmetry of representation vs. objects

8

Euclidean symmetry, E(3):
Symmetry of 3D space
The freedom to choose your coordinate system

Symmetry of geometric objects
Looks the same under specific rotations,
translations, and inversion (includes mirrors).

Symmetry emerges when different ways of representing something “mean” the same thing.
Symmetry of representation vs. objects

9

Neural networks are specially designed for different data types.
Assumptions about the data type are built into how the network operates.

Arrays ⇨ Dense NN 2D images
⇨ Convolutional NN

Text ⇨ Recurrent NN

Components are
independent.

The same features can be
found anywhere in an image.
Locality.

Sequential data. Next
input/output depends on
input/output that has come
before.

W x
Graph ⇨ Graph (Conv.) NN

3D physical data
⇨ Euclidean NN

Data in 3D Euclidean
space. Freedom to choose
coordinate system.

Topological data. Nodes
have features and network
passes messages between
nodes connected via edges.

10

Neural networks are specially designed for different data types.
Assumptions about the data type are built into how the network operates.
Thus, symmetries are encoded by tailoring network operations.
Arrays ⇨ Dense NN 2D images

⇨ Convolutional NN
Text ⇨ Recurrent NN

Components are
independent.

The same features can be
found anywhere in an image.
Locality.

Sequential data. Next
input/output depends on
input/output that has come
before.

W x
Graph ⇨ Graph (Conv.) NN

3D physical data
⇨ Euclidean NN

Data in 3D Euclidean
space. Equivariant to
choice of coordinate
system.

No symmetry!

2D-translation symmetry

(forward) time-translation symm.

permutation symmetry

3D Euclidean symmetry E(3):
3D rotations, translations, and

inversion

Topological data. Nodes
have features and network
passes messages between
nodes connected via edges.

11

H -0.21463 0.97837 0.33136
C -0.38325 0.66317 -0.70334
C -1.57552 0.03829 -1.05450
H -2.34514 -0.13834 -0.29630
C -1.78983 -0.36233 -2.36935
H -2.72799 -0.85413 -2.64566
C -0.81200 -0.13809 -3.33310
H -0.98066 -0.45335 -4.36774
C 0.38026 0.48673 -2.98192
H 1.14976 0.66307 -3.74025
C 0.59460 0.88737 -1.66708
H 1.53276 1.37906 -1.39070

Coordinates are most
general, but sensitive to
translations, rotations, and
inversion.

Three ways to make models “symmetry-aware” for 3D data
e.g. How to make a model that “understands” the symmetry of atomic structures?

12

Approach 1:
Data Augmentation

Throw data at the problem and
see what you get!

Approach 3:
Invariant models
Equivariant models

If there’s no model that naturally
handles coordinates,
we will make one.

Approach 2:
Invariant Inputs

Convert your data to invariant
representations so the neural
network can’t possibly mess it
up.

H -0.21463 0.97837 0.33136
C -0.38325 0.66317 -0.70334
C -1.57552 0.03829 -1.05450
H -2.34514 -0.13834 -0.29630
C -1.78983 -0.36233 -2.36935
H -2.72799 -0.85413 -2.64566
C -0.81200 -0.13809 -3.33310
H -0.98066 -0.45335 -4.36774
C 0.38026 0.48673 -2.98192
H 1.14976 0.66307 -3.74025
C 0.59460 0.88737 -1.66708
H 1.53276 1.37906 -1.39070

Coordinates are most
general, but sensitive to
translations, rotations, and
inversion.

Three ways to make models “symmetry-aware” for 3D data
e.g. How to make a model that “understands” the symmetry of atomic structures?

13

Approach 1:
Data Augmentation

Throw data at the problem and
see what you get!

Approach 3:
Invariant models
Equivariant models

If there’s no model that naturally
handles coordinates,
we will make one.

Approach 2:
Invariant Inputs

Convert your data to invariant
representations so the neural
network can’t possibly mess it
up.

👌�� ��

H -0.21463 0.97837 0.33136
C -0.38325 0.66317 -0.70334
C -1.57552 0.03829 -1.05450
H -2.34514 -0.13834 -0.29630
C -1.78983 -0.36233 -2.36935
H -2.72799 -0.85413 -2.64566
C -0.81200 -0.13809 -3.33310
H -0.98066 -0.45335 -4.36774
C 0.38026 0.48673 -2.98192
H 1.14976 0.66307 -3.74025
C 0.59460 0.88737 -1.66708
H 1.53276 1.37906 -1.39070

Coordinates are most
general, but sensitive to
translations, rotations, and
inversion.

Three ways to make models “symmetry-aware” for 3D data
e.g. How to make a model that “understands” the symmetry of atomic structures?

Invariance vs. Equivariance (covariance) e.g. in 3D space

Does NOT change ⇨ Invariant
Changes deterministically ⇨ Equivariant

Properties of a vector
under E(3)

Translation

Rotation

Inversion

3D
 ve

cto
r

14

15

For 3D data, data augmentation is expensive, ~500 fold augmentation
and you still don’t get the guarantee of equivariance (it’s only emulated).

training without rotational symmetry

training with symmetry

16

For a function to be equivariant means that we can act on our inputs with g
OR act our outputs with g and we get the same answer (for every operation).
For a function with invariant input (e.g. invariant models) means g is the identity (no change).

Layerin outg

Layerin outg=

17

Why limit yourself to equivariant functions?
You can substantially shrink the space of functions you need to optimize over.
This means you need less data to constrain your function.

All learnable functions

All learnable
equivariant
functions

All learnable
functions
constrained
by your data.

Functions you
actually wanted
to learn.

18

Why not limit yourself to invariant functions?
You have to guarantee that your input features already
contain any necessary equivariant interactions (e.g. cross-products).

All learnable
equivariant
functions

Functions you actually
wanted to learn.All learnable

invariant
functions.

All invariant
functions
constrained by
your data.

OR

How Euclidean Neural Networks achieve equivariance to Euclidean symmetry
(high level)

Euclidean Neural Networks encompass
Tensor Field Networks (arXiv:1802.08219)
Clebsch-Gordon Nets (arXiv:1806.09231)

3D Steerable CNNs (arXiv:1807.02547)
Cormorant (arXiv:1906.04015)

SE(3)-Transformers (arXiv:2006.10503)
e3nn (github.com/e3nn/e3nn)

(Technically, e3nn is the only one that implements inversion)

Some relevant folks… Mario Geiger, Ben Miller,
Risi Kondor, Taco Cohen, Maurice Weiler, Daniel

E. Worrall, Fabian B. Fuchs, Max Welling,
Nathaniel Thomas, Shubhendu Trivedi,...

Euclidean Neural Networks are similar to convolutional neural networks...

Equivariant convolutional filters are based on
learned radial functions and spherical harmonics...

=
Neighbor
atoms

Convolution
center

Euclidean Neural Networks are similar to convolutional neural networks...

Equivariant convolutional filters are based on
learned radial functions and spherical harmonics...

=
Neighbor
atoms

Convolution
center

Euclidean Neural Networks are similar to convolutional neural networks...

Spherical harmonics of the same L transform
together under rotation g.

Spherical harmonics transform in the same manner
as the irreducible representations of SO(3).

Equivariant convolutional filters are based on
learned radial functions and spherical harmonics...

=
Neighbor
atoms

Convolution
center

Euclidean Neural Networks are similar to convolutional neural networks...

Equivariant convolutional filters are based on
learned radial functions and spherical harmonics...

=
Neighbor
atoms

Convolution
center

Euclidean Neural Networks are similar to convolutional neural networks...

...and geometric tensor algebra allow us to
generalize scalar operations to more complex
geometric tensors.

e.g. How to multiply two vectors?

scalar

vector

3x3
matrix

Equivariant convolutional filters are based on
learned radial functions and spherical harmonics...

=
Neighbor
atoms

Convolution
center

Euclidean Neural Networks are similar to convolutional neural networks...

...and geometric tensor algebra allow us to
generalize scalar operations to more complex
geometric tensors.

e.g. How to multiply two vectors?

scalar

vector

3x3
matrix

The input to our network is geometry and features on that geometry.

26

geometry = [[x0, y0, z0],[x1, y1, z1]]
features = [

[m0, v0y, v0z, v0x, a0y, a0z, a0x]
[m1, v1y, v1z, v1x, a1y, a1z, a1x]

]
...

27

geometry = [[x0, y0, z0],[x1, y1, z1]]
features = [

[m0, v0y, v0z, v0x, a0y, a0z, a0x]
[m1, v1y, v1z, v1x, a1y, a1z, a1x]

]
Rs = [(1, 0, 1), (1, 1, -1), (1, 1, -1)]
OR
Rs = [(1, 0, 1), (2, 1, -1)]

1 Scalar (L=0)
(even parity)

2 Vectors (L=1)
(odd parity)

“Representation List”
 Notation
Rs = [(copies, L, parity),...]

The input to our network is geometry and features on that geometry.
We categorize our features by how they transform under rotation and parity
as irreducible representations of O(3).

What does equivariance get you?

29

Given a molecule and a rotated copy,
predicted forces are the same up to rotation.
(Predicted forces are equivariant to rotation.)
Additionally, networks generalize to molecules with similar motifs.

30

Primitive unit cells, conventional unit cells, and supercells of the same crystal
produce the same output (assuming periodic boundary conditions).

O
1s 2s 2s 2p 2p 3d

H
1s 2s 2p

H
1s 2s 2p

31

E(3)NNs can express tensors of atomic orbitals and predict molecular
Hamiltonians in any orientation from seeing a single example.

geometry features

We can convert local geometry into features and vice versa
via spherical harmonic projections.

E(3)NNs can manipulate geometry,
which means they can be used for generative models such as autoencoders.

E(3)NNs are extremely data efficient.

E(3)NNs for molecular dynamics (coming soon)
Water

Data from: Zhang, L. et al. E. (2018). PRL, 120(14), 143001.

Simon
Batzner

Boris
Kozinsky

E(3)NNs are extremely data efficient.

(meV/Å) (meV/Å)

E(3)NNs for molecular dynamics (coming soon)
Water

E(3)NNs for phonon density of states (arxiv:2009.05163)
Training set of 1,200 crystal structures with 64 atom types.
Test set includes atom types never seen. Used to find high Cv.
Data from Materials Project

35

Simon
Batzner

Boris
Kozinsky

Zhantao Chen
Nina Andrejevic
Mingda Li

E(3)NNs are extremely data efficient.

Data from: Zhang, L. et al. E. (2018). PRL, 120(14), 143001.

(meV/Å) (meV/Å)

https://arxiv.org/abs/2009.05163

Features that are consequences of fully treating Euclidean symmetry...

Vector

Pseudo-
vector

Double-
Headed
Ray

Spiral

Rs_vector = [(1, 1, -1)]

Rs_pseudovector = [(1, 1, 1)]

Rs_doubleray = [(1, 2, 1)]

Rs_spiral = [(1, 2, -1)]

Feature 1: All data (input, intermediates, output) in E(3)NNs are geometric tensors.
Geometric tensors are the “data types” of 3D space and have many forms.

Feature 1: All data (input, intermediates, output) in E(3)NNs are geometric tensors.
Geometric tensors are the “data types” of 3D space and have many forms.

Rs_s_orbital = [(1, 0, 1)]

Rs_p_orbital = [(1, 1, -1)]

Rs_d_orbital = [(1, 2, 1)]

Rs_f_orbital = [(1, 3, -1)]

39

Feature 2: The outputs have equal or higher symmetry than the inputs.
Curie’s principle (1894):

input
random
model 1

random
model 2

random
model 3

Tetrahedron

Octahedron

“When effects show certain asymmetry, this asymmetry must be found
 in the causes that gave rise to them.”

T. E. Smidt, M. Geiger, B. K. Miller. https://arxiv.org/abs/2007.02005 (2020)

https://arxiv.org/abs/2007.02005

“When effects show certain asymmetry, this asymmetry must be found
 in the causes that gave rise to them.”

40

Feature 2: The outputs have equal or higher symmetry than the inputs.
Curie’s principle (1894):

input
random
model 1

random
model 2

random
model 3

Tetrahedron

Octahedron

Implement group equivariance

and get all subgroups for FREE!

e.g. space groups, point groups

T. E. Smidt, M. Geiger, B. K. Miller. https://arxiv.org/abs/2007.02005 (2020)

https://arxiv.org/abs/2007.02005

41

Feature 2: The outputs have equal or higher symmetry than the inputs.
Symmetry compiler -- can’t fit a model that does symmetrically make sense

T. E. Smidt, M. Geiger, B. K. Miller. https://arxiv.org/abs/2007.02005 (2020)

https://arxiv.org/abs/2007.02005

42

✓ ✗

Feature 2: The outputs have equal or higher symmetry than the inputs.
Symmetry compiler -- can’t fit a model that does symmetrically make sense

T. E. Smidt, M. Geiger, B. K. Miller. https://arxiv.org/abs/2007.02005 (2020)

https://arxiv.org/abs/2007.02005

43

Feature 2: The outputs have equal or higher symmetry than the inputs.
Symmetry compiler -- can’t fit a model that does symmetrically make sense

Network
predicts
degenerate
outcomes!

✓ ✗

T. E. Smidt, M. Geiger, B. K. Miller. https://arxiv.org/abs/2007.02005 (2020)

https://arxiv.org/abs/2007.02005

44

Feature 2: The outputs have equal or higher symmetry than the inputs.
Symmetry compiler -- can’t fit a model that does symmetrically make sense

Network
predicts
degenerate
outcomes!The network does NOT

know the symmetry of

the inputs or outputs! It

only acts equivariantly.

✓ ✗

T. E. Smidt, M. Geiger, B. K. Miller. https://arxiv.org/abs/2007.02005 (2020)

https://arxiv.org/abs/2007.02005

✓ ✗

45

→ Learns anisotropic inputs. → Model can fit.

Input

Output

L = 0 + 2 + 4L = 0

Use gradients to “find” what’s missing.

Feature 3: We can find data that is implied by symmetry.
Using gradients of loss wrt input we can find symmetry breaking “order parameters”

Irreps with
even parity
L ≥ 2 break
degeneracy
between x and
y directions.

T. E. Smidt, M. Geiger, B. K. Miller. https://arxiv.org/abs/2007.02005 (2020)

https://arxiv.org/abs/2007.02005

46

Feature 3: We can find data that is implied by symmetry.
Using gradients of loss wrt input we can find symmetry breaking “order parameters”

Octahedral tilting in perovskites (M3+ ⊕ R4+) ⇨
Network learns equal magnitude pseudovector order parameters on B site with proper spatial patterning.

T. E. Smidt, M. Geiger, B. K. Miller. https://arxiv.org/abs/2007.02005 (2020)

https://arxiv.org/abs/2007.02005

47

developers of e3nn

Mario Geiger
(EPFL)

Ben Miller
(U of Amsterdam,

formerly FU Berlin)

Tess Smidt
(LBNL)

Kostiantyn
Lapchevskyi

e3nn: a modular PyTorch framework for Euclidean neural networks
https://github.com/e3nn/e3nn

Utilities and classes for
● building E(3) equivariant neural networks
● manipulating geometric tensors
● visualizing spherical harmonics

https://github.com/e3nn/e3nn

48

e3nn: a modular PyTorch framework for Euclidean neural networks
https://github.com/e3nn/e3nn

Creating a basic convolution E(3) neural network

import torch
from e3nn import rs
from e3nn.networks import GatedConvParityNetwork
torch.set_default_dtype(torch.float64)

N_atom_types = 3 # For example H, C, O
Rs_in = [(N_atom_types, 0, 1)] # Input are scalars
Rs_out = [(1, 1, -1)] # Predict vectors

model_kwargs = {
'Rs_in': Rs_in, 'Rs_out': Rs_out, 'mul': 4, 'lmax': 2,
'layers': 3, 'max_radius': r_max, 'number_of_basis': 10,

}

model = GatedConvParityNetwork(**model_kwargs)

https://github.com/e3nn/e3nn

49

e3nn: a modular PyTorch framework for Euclidean neural networks
https://github.com/e3nn/e3nn
Convert between Cartesian tensors (with symmetric indices) and Irrep tensors and
calculate degrees of freedom (e.g. elasticity tensor)

import torch
from e3nn import rs
from e3nn.tensor import CartesianTensor
torch.set_default_dtype(torch.float64)

rank4 = torch.zeros(3, 3, 3, 3) # Placeholder
Rs, Q = CartesianTensor(rank4, 'ijkl=jikl=klij').to_irrep_transformation()
print(“Representations: ”, Rs)
print(“Degrees of freedom: ”, rs.dim(Rs))

>> Representations: [(2, 0, 1), (2, 2, 1), (1, 4, 1)]
>> Degrees of freedom: 21

https://github.com/e3nn/e3nn

50

e3nn: a modular PyTorch framework for Euclidean neural networks
https://github.com/e3nn/e3nn
Plot 3x3 matrix as linear combination of spherical harmonics.

...

Symmetric Matrix
M = torch.randn(3,3)
M = M + M.transpose(0, 1)

Plot matrix
px.imshow(M)

matrix = CartesianTensor(M, formula='ij=ji').to_irrep_tensor()
r, f = SphericalTensor.from_irrep_tensor(matrix).plot()

Plot SH signal
surface_plot = lambda r, f: go.Surface(

x=r[..., 0], y=r[..., 1], z=r[..., 2],
surfacecolor=f, showscale=False)

go.Figure([surface_plot(r, f)])

https://github.com/e3nn/e3nn

collaborators of e3nn

Boris
Kozinsky

Simon
Batzner

Josh
Rackers

Thomas
Hardin

Eugene
Kwan

Frank
Noé

Mingda
Li

Nina
Andrejevic

 Zhantao
Chen

Claire
West

52Feel free to reach out if
you have any questions!

Tess Smidt
tsmidt@lbl.gov

A Quick Recap!

3D Euclidean symmetry:
rotations, translation, inversion
Different coordinate systems

⇨ same physical system

Euclidean Neural Networks are equivariant to E(3)
Convolutional filters

⇨ learned radial functions
 and spherical harmonics

Geometric tensor algebra
Equivariant nonlinearities (did not discuss)

Equivariance can have unintended features.
1) Symmetry specific data types
2) Output symmetry equal to inputs

● Implement group equivariance and
get all subgroups for FREE!

● Symmetry compilers
3) Grad loss wrt input can break symmetry

Resources on Euclidean neural networks:
e3nn.org

e3nn Code (PyTorch):
http://github.com/e3nn/e3nn
“quick” tutorial:
https://tinyurl.com/e3nn-quick-tutorial-202011
e3nn_tutorial:
http://blondegeek.github.io/e3nn_tutorial/
Papers:

Tensor Field Networks (arXiv:1802.08219)
Clebsch-Gordon Nets (arXiv:1806.09231)

3D Steerable CNNs (arXiv:1807.02547)
Cormorant (arXiv:1906.04015)

SE(3)-Transformers (arXiv:2006.10503)
tfnns on proteins (arXiv:2006.09275)

e3nn on QM9 (arXiv:2008.08461)
e3nn for symm breaking (arXiv:2008.08461)

E(3) and equivariance in ML (chemrxiv.12935198.v1)
e3nn for phonon DOS (arxiv:2009.05163)

My past talks (look for video / slide links):
https://blondegeek.github.io/talks 53Feel free to reach out if

you have any questions!
Tess Smidt
tsmidt@lbl.gov

A Quick Recap!

3D Euclidean symmetry:
rotations, translation, inversion
Different coordinate systems

⇨ same physical system

Euclidean Neural Networks are equivariant to E(3)
Convolutional filters

⇨ learned radial functions
 and spherical harmonics

Geometric tensor algebra
Equivariant nonlinearities (did not discuss)

Equivariance can have unintended features.
1) Symmetry specific data types
2) Output symmetry equal to inputs

● Implement group equivariance and
get all subgroups for FREE!

● Symmetry compilers
3) Grad loss wrt input can break symmetry

https://e3nn.org/
https://blondegeek.github.io/e3nn_tutorial/
https://arxiv.org/abs/1802.08219
https://arxiv.org/abs/1806.09231
https://arxiv.org/abs/1807.02547
https://arxiv.org/abs/1906.04015
https://arxiv.org/abs/2006.10503
https://arxiv.org/abs/2006.09275
https://arxiv.org/abs/2008.08461
https://arxiv.org/abs/2008.08461
https://doi.org/10.26434/chemrxiv.12935198.v1
https://arxiv.org/abs/2009.05163
https://blondegeek.github.io/talks

Calling in backup (slides)!

54

55

Applications so far...

● Finding order parameters of 2nd order structural phase transitions
● Molecular dynamics (Harvard)
● Molecule and crystal property prediction (FU Berlin)
● Inverting invariant representations of atomic geometries (Sandia)
● Autoencoding Geometry
● Predicting molecular Hamiltonians (TU Berlin)
● Long range interactions (FU Berlin, TU Berlin)
● Electron density prediction for large molecules (Sandia)
● Predicting chemical shifts for NMR (Merck, MIT)
● Conditional protein design (UW)
● Inverse design of optical properties of nanoparticle assemblies (LBL and UW)
● Phonon properties of crystal structures (MIT)
● Anharmonic elastic properties of crystal structures (UTEP)
● ...

Let g be an
element of
SO(3)

a-1 +a0 +a1

=

D is the Wigner-D matrix.
It has shape
and is a function of g.

Spherical harmonics of a given L transform together under rotation.

g

56

b-1 +b0 +b1

D

Predict ab initio forces for molecular dynamics
Preliminary results originally presented at
APS March Meeting 2019.
Paper in progress.

57

Testing on liquid water, Euclidean neural networks (Tensor-Field
Molecular Dynamics) require less data to train than traditional
networks to get state of the art results.

Data set from: [1]
Zhang, L. et al. E. (2018).
PRL, 120(14), 143001.

Boris
Kozinsky

Simon
Batzner

Euclidean neural networks can manipulate geometry,
which means they can be used for generative models such as autoencoders.

geometry features

To encode/decode, we have to be able to
convert geometry into features and vice versa.
We do this via spherical harmonic projections.

Euclidean neural networks can manipulate geometry,
which means they can be used for generative models such as autoencoders.

60

Equivariant neural networks can learn to invert invariant representations.

Which can be used
to recover geometry.

Network can predict
spherical harmonic
projection...

Invariant features +
coordinate frame

ENN Peak finding

Josh
Rackers

Thomas
Hardin

Pooling Pooling Unpooling Unpooling

We can also build an autoencoder for geometry: e.g. Autoencoder on 3D Tetris
Centers deleted

Centers deleted

Pooling Pooling Unpooling Unpooling

We can also build an autoencoder for geometry: e.g. Autoencoder on 3D Tetris

Other
atoms

Convolution
center

We encode the symmetries of 3D Euclidean space (3D translation- and 3D rotation-equivariance).

63

We use points. Images of atomic systems are sparse and imprecise.

vs.

We use continuous convolutions
with atoms as convolution
centers.

Euclidean Neural Networks are similar to convolutional neural networks...

We encode the symmetries of 3D Euclidean space (3D translation- and 3D rotation-equivariance).

64

We use points. Images of atomic systems are sparse and imprecise.

vs.
Other
atoms

Convolution
center

We use continuous convolutions
with atoms as convolution
centers.

Euclidean Neural Networks are similar to convolutional neural networks...

We encode the symmetries of 3D Euclidean space (3D translation- and 3D rotation-equivariance).

We use continuous convolutions
with atoms as convolution
centers.

65

We use points. Images of atomic systems are sparse and imprecise.

vs.

Euclidean Neural Networks are similar to convolutional neural networks...

Other
atoms

Convolution
center

Translation equivariance
Convolutional neural
network ✓

Rotation equivariance
Data augmentation
Radial functions (invariant)
Want a network that both
preserves geometry and
exploits symmetry.

66

Invariant featurizations can be very expressive if well-crafted
Many invariant featurizations use equivariant operations
e.g. a (simplified) SOAP kernel for ethane molecule C2H6

(1) Project neighbors of given atom
onto spherical harmonics
(equivariant quantity).

(2) Interact signals from different
atoms via tensor dot product
(equivariant operation) to produce
scalars (invariant quantity).

(3) Give scalars to model.

(1)

(2) (3)

(Favored for kernel methods)

68

For a function to be equivariant means that we can act on our inputs with g
OR act our outputs with g and we get the same answer (for every operation).
For a function to be invariant means g is the identity (no change).

Layerin outg

Layerin outg=

69

Why limit yourself to equivariant functions?
You can substantially shrink the space of functions you need to optimize over.
This means you need less data to constrain your function.

All learnable functions

All learnable
equivariant
functions

All learnable
functions
constrained
by your data.

Functions you
actually wanted
to learn.

70

Why not limit yourself to invariant functions?
You have to guarantee that your input features already
contain any necessary equivariant interactions (e.g. cross-products).

All learnable
equivariant
functions

Functions you actually
wanted to learn.All learnable

invariant
functions.

All invariant
functions
constrained by
your data.

OR

71

Neural networks are specially designed for different data types.
Assumptions about the data type are built into how the network operates.

Arrays ⇨ Dense NN 2D images
⇨ Convolutional NN

Text ⇨ Recurrent NN

Components are
independent.

The same features can be
found anywhere in an image.
Locality.

Sequential data. Next
input/output depends on
input/output that has come
before.

W x
Graph ⇨ Graph (Conv.) NN

3D physical data
⇨ Euclidean NN

Data in 3D Euclidean
space. Freedom to choose
coordinate system.

Topological data. Nodes
have features and network
passes messages between
nodes connected via edges.

72

Neural networks are specially designed for different data types.
Assumptions about the data type are built into how the network operates.
Symmetries emerge from these assumptions.
Arrays ⇨ Dense NN 2D images

⇨ Convolutional NN
Text ⇨ Recurrent NN

Components are
independent.

The same features can be
found anywhere in an image.
Locality.

Sequential data. Next
input/output depends on
input/output that has come
before.

W x
Graph ⇨ Graph (Conv.) NN

3D physical data
⇨ Euclidean NN

Data in 3D Euclidean
space. Equivariant to
choice of coordinate
system.

No symmetry!

2D-translation symmetry

(forward) time-translation symm.

permutation symmetry

3D Euclidean symmetry E(3):
3D rotations translations and

inversion

Topological data. Nodes
have features and network
passes messages between
nodes connected via edges.

✓ ✓ ✓ ✓

If you can craft a good representation -- great!
But deep learning’s specialty is feature learning.
So, maybe use a different machine learning approach (e.g. kernel methods).

Neural networks can’t mess up invariant representations.
You can use ANY neural network with an invariant representation.
Invariant representations can be used for other machine learning algorithms
(e.g. kernel methods).

74

Analogous to... the laws of (non-relativistic) physics have Euclidean symmetry,
even if systems do not.

The network is our model of “physics”. The input to the network is our system.

q

B q

q q

q

75

A Euclidean symmetry preserving network produces outputs that preserve
the subset of symmetries induced by the input.

O(3) Oh Pm-3m
(221)

SO(2) +
mirrors

(C∞v)

3D rotations and
inversions

2D rotation and
mirrors along
cone axis

Discrete rotations
and mirrors

Discrete rotations,
mirrors, and translations

76

Properties of a system must be compatible with symmetry.
Which of these situations (inputs / outputs) are symmetrically allowed / forbidden?

m m

m m

m m

a.

b.

c.

77

m m

m m

m m

a.

b.

c.

✓

✗

✗

Properties of a system must be compatible with symmetry.
Which of these situations (inputs / outputs) are symmetrically allowed / forbidden?

78

m m

m m

m m

a.

b.

c.

✓

✗

✗

m 2m

Properties of a system must be compatible with symmetry.
Which of these situations (inputs / outputs) are symmetrically allowed / forbidden?

79

m m

m m

m m

a.

b.

c.

✓

✗

✗

m 2m

m m
g

Properties of a system must be compatible with symmetry.
Which of these situations (inputs / outputs) are symmetrically allowed / forbidden?

80

Equivariance can have unintuitive consequences.
Partition graph with permutation equivariant function into two sets using ordered labels.

Predict node labels
[0, 1] vs. [1, 0]

81

Equivariance can have unintuitive consequences.
Partition graph with permutation equivariant function into two sets using ordered labels.
You can’t due to degeneracy.

[0, 1]
[1, 0] [0, 1]

[1, 0]

There’s nothing to distinguish one
partition to be “first” vs. “second”.

Predict node labels
[0, 1] vs. [1, 0]

Convolutions: Local vs. Global Symmetry
Convolutions capture local symmetry. Interaction of features in later layers yields global symmetry.
e.g. Coordination environments in crystals

Atomic systems form geometric motifs that can
appear at multiple locations and orientations.

(Local symmetry)

Space group:
Symmetry of unit cell

(Global symmetry)

83

Translation symmetry in 2D:

Features “mean” the same thing in any location.

Symmetry emerges when different ways of representing something “mean” the same thing.
Representation can have symmetry, operations can preserve symmetry, and objects can have symmetry.

✓

✗ ✓

✓

84

Translation symmetry in 2D:

Features “mean” the same thing in any location.

Symmetry emerges when different ways of representing something “mean” the same thing.
Representation can have symmetry, operations can preserve symmetry, and objects can have symmetry.

Symmetry of 2D objects
Boundaries “break” global translation symmetry.

Periodic boundary conditions preserve
discrete translation symmetry.

✓

✗ ✓

✓

85

Permutation symmetry, SN:
Symmetry of sets
The freedom to list things in any order

Symmetry emerges when different ways of representing something “mean” the same thing.
Representation can have symmetry, operations can preserve symmetry, and objects can have symmetry.

86

Permutation symmetry, SN:
Symmetry of sets
The freedom to list things in any order

Symmetry of elements of a graph
Graph automorphism, specific nodes are
indistinguishable (same global connectivity)

Symmetry emerges when different ways of representing something “mean” the same thing.
Representation can have symmetry, operations can preserve symmetry, and objects can have symmetry.

A bit of group theory! Don’t worry just a bit!
Formally, what are invariant vs. equivariant functions

function (neural network)...vector in vector space
inputs

outputs

weights

...which is equivalent to writing.

A bit of group theory! Don’t worry just a bit!
Formally, what are invariant vs. equivariant functions

function (neural network)...

element of group

representation of g acting on vector space

vector in vector space
inputs

outputs

weights

...which is equivalent to writing.

A bit of group theory! Don’t worry just a bit!
Formally, what are invariant vs. equivariant functions

function (neural network)...

element of group

representation of g acting on vector space

vector in vector space
inputs

outputs

weights

...which is equivalent to writing.

equivariant to x if

A bit of group theory! Don’t worry just a bit!
Formally, what are invariant vs. equivariant functions

function (neural network)...

element of group

representation of g acting on vector space

vector in vector space
inputs

outputs

weights

...which is equivalent to writing.

If we want to be equivariant to
x, this has to be the case…
weights must be “scalars”equivariant to x if

A bit of group theory! Don’t worry just a bit!
Formally, what are invariant vs. equivariant functions

function (neural network)...

element of group

representation of g acting on vector space

vector in vector space
inputs

outputs

weights

...which is equivalent to writing.

If we want to be equivariant to
x, this has to be the case…
weights must be “scalars”equivariant to x if

A bit of group theory! Don’t worry just a bit!
Formally, what are invariant vs. equivariant functions

function (neural network)...

element of group

representation of g acting on vector space

vector in vector space
inputs

outputs

weights

...which is equivalent to writing.

If we want to be equivariant to
x, this has to be the case…
weights must be “scalars”equivariant to x if

(special case) invariant to x if

93

M. Zaheer et al, Deep Sets, NeurIPS 2017

94

Convolutional neural networks can “cheat” by being sensitive to “boundaries”.
(e.g. Predict geodesics on projected maps with and without periodic boundary conditions)

User: Stebe
https://en.wikipedia.org/wiki/Gall-Peters_projection

✓ ✗ ✓

Nodes can be distinguished due
to differing topology by latitude
(e.g. poles)!

Boundaries break symmetry. Pixels cannot be distinguished due
to translation equivariance.

95

In the physical sciences...
What our our data types?
3D geometry and geometric tensors...
...which transform predictably under 3D rotation, translation, and inversion.

These data types assume Euclidean symmetry.
⇨ Thus, we need neural networks that preserve Euclidean symmetry.

96

Scalars
● Energy
● Mass
● Isotropic *

Vectors
● Force
● Velocity
● Acceleration
● Polarization

Pseudovectors
● Angular momentum
● Magnetic fields

Matrices, Tensors, …
● Moment of Inertia
● Polarizability
● Interaction of multipoles
● Elasticity tensor (rank 4)

m

Atomic orbitals

Output of
Angular
Fourier
Transforms

Vector fields on
spheres
(e.g. B-modes
of the Cosmic
Microwave
Background)

Geometric tensors take many forms. They are a general data type beyond materials.

Our unit test: Trained on 3D Tetris shapes in one orientation,
these network can perfectly identify these shapes in any orientation.

TR
A

IN
TE

ST

97

Chiral

98

Several groups converged on similar ideas around the same time.

Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
(arXiv:1802.08219)
Tess Smidt*, Nathaniel Thomas*, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, Patrick Riley

Points, nonlinearity on norm of tensors

Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network
(arXiv:1806.09231)
Risi Kondor, Zhen Lin, Shubhendu Trivedi

Only use tensor product as nonlinearity, no radial function

3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data
(arXiv:1807.02547)
Mario Geiger*, Maurice Weiler*, Max Welling, Wouter Boomsma, Taco Cohen

Efficient framework for voxels, gated nonlinearity

*denotes equal contribution

99

Several groups converged on similar ideas around the same time.

Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
(arXiv:1802.08219)
Tess Smidt*, Nathaniel Thomas*, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, Patrick Riley

Points, nonlinearity on norm of tensors

Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network
(arXiv:1806.09231)
Risi Kondor, Zhen Lin, Shubhendu Trivedi

Only use tensor product as nonlinearity, no radial function

3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data
(arXiv:1807.02547)
Mario Geiger*, Maurice Weiler*, Max Welling, Wouter Boomsma, Taco Cohen

Efficient framework for voxels, gated nonlinearity

*denotes equal contribution

Tensor field networks + 3D steerable CNNs
= Euclidean neural networks (e3nn)

Let g be a 3d
rotation matrix.

a-1 +a0 +a1

=

D is the Wigner-D matrix.
It has shape
and is a function of g.

Spherical harmonics of a given L transform together under rotation.

g

100

b-1 +b0 +b1

D

Convolve

Bloom
Make points to cluster

Symmetric Cluster
Cluster bloomed points

Combine
Convolve with point origins of

cluster members

Geometry

N
ew

 G
eom

etry

How to encode (Pooling layer). Recursively convert geometry to features.

1st

2nd

Convolve

Bloom
Make new points

Cluster
Merge duplicate points

Combine
Convolve with origin point

of new points

Geometry

N
ew

 G
eom

etry

How to decode (Unpooling layer). Recursively convert features to geometry.

103

Discrete geometry Discrete geometry

Reduce
geometry to
single point.

Create
geometry from
single point.

We want to convert geometric information (3D coordinates of atomic positions)
into features on a trivial geometry (a single point)
and back again.

Single point with continuous
latent representation
(N dimensional vector)

104

Reduce
geometry to
single point.

Create
geometry from
single point.

Atomic structures are
hierarchical and can be
constructed from
recurring geometric
motifs.

We want to convert geometric information (3D coordinates of atomic positions)
into features on a trivial geometry (a single point)
and back again.

Discrete geometry Discrete geometry
Single point with continuous
latent representation
(N dimensional vector)

105

Reduce
geometry to
single point.

Create
geometry from
single point.

+ Encode geometry
+ Encode hierarchy

(Need to do this in a recursive manner)

We want to convert geometric information (3D coordinates of atomic positions)
into features on a trivial geometry (a single point)
and back again.

Discrete geometry Discrete geometry
Single point with continuous
latent representation
(N dimensional vector)

Atomic structures are
hierarchical and can be
constructed from
recurring geometric
motifs.

+ Decode geometry
+ Decode hierarchy

To autoencode, we have to be able to convert
geometry into features and vice versa.
We do this via spherical harmonic projections.

107

...where the electrons are...

Given an atomic structure,

E
ne

rg
y

(e
V

)

Momentum

...and what the electrons are doing.

...use quantum theory and
supercomputers to determine...

What a computational materials physicist does:

Structure

Properties

Si

Quantum Theory / Molecular dynamics
 + Supercomputers Properties

Hypothesize

Inverse Design

Zooooom!

Map

Structure

We want to use deep learning to speed up calculations, hypothesize new structures,
perform inverse design, and organize these relations.

Primer?

#
#

Quantum Theory / Molecular dynamics
 + Supercomputers Properties

Hypothesize

Inverse Design

Zooooom!

Map

Structure

We want to use deep learning to speed up calculations, hypothesize new structures,
perform inverse design, and organize these relations.

The problems
start here

110

Given a single example of a degenerate solution,
it knows what other solutions are possible by symmetry.
(Useful for ensuring you’re not biasing your sampling.)

111

To be rotation-equivariant means that we can rotate our inputs
OR rotate our outputs and we get the same answer (for every operation).

Layerin outRot

Layerin outRot=

For L=1 ⇨ L=1, the filters will be a learned, radially-dependent linear
combinations of the L = 0, 1, and 2 spherical harmonics.

112

L=2

Random filters for
L=1 ⇨ L=1…
(3 in L=1 channels by
 3 out L=1 channels)

… as a function of
increasing r.
Time showing filter for
varying r, where
0 ≤ r ≤ rmax

.

(+ / –)
Radial distance is
magnitude
as a function of
angle

113

114

Predictions for Oh symmetry
Ground Truth

Prediction of
network trained
with symmetry
breaking input
and given
symmetry
breaking input
along z.

Prediction of
network trained
with symmetry
breaking input
but given trivial
input
(single scalar).

Superposition of 6
rotationally
degenerate solutions.

A brief primer on deep learning

deep learning ⊂ machine learning ⊂ artificial intelligence

model | deep learning | data | cost function | way to update parameters | conv. nets 115

Skip?

#

model (“neural network”):
Function with learnable parameters.

model | deep learning | data | cost function | way to update parameters | conv. nets 116

A brief primer on deep learning

model (“neural network”):
Function with learnable parameters.

Linear
transformation

Element-wise
nonlinear
function

Learned
Parameters

Ex: "Fully-connected"
network

model | deep learning | data | cost function | way to update parameters | conv. nets 117

A brief primer on deep learning

model (“neural network”):
Function with learnable parameters.

Neural networks with multiple layers
can learn more complicated functions.

Learned
Parameters

model | deep learning | data | cost function | way to update parameters | conv. nets 118

Ex: "Fully-connected"
network

A brief primer on deep learning

model (“neural network”):
Function with learnable parameters.

Neural networks with multiple layers
can learn more complicated functions.

Learned
Parameters

model | deep learning | data | cost function | way to update parameters | conv. nets 119

Ex: "Fully-connected"
network

A brief primer on deep learning

deep learning:
Add more layers.

model | deep learning | data | cost function | way to update parameters | conv. nets 120

A brief primer on deep learning

data:
Want lots of it. Model has many parameters. Don't want to easily overfit.

https://en.wikipedia.org/wiki/Overfitting

model | deep learning | data | cost function | way to update parameters | conv. nets 121

A brief primer on deep learning

cost function:
A metric to assess how well the model is performing.
The cost function is evaluated on the output of the model.
Also called the loss or error.

model | deep learning | data | cost function | way to update parameters | conv. nets 122

A brief primer on deep learning

way to update parameters:
Construct a model that is differentiable

Easiest to do with differentiable programming frameworks: e.g. Torch, TensorFlow, JAX, ...
Take derivatives of the cost function (loss or error) wrt to learnable parameters.
This is called backpropogation (aka the chain rule).

error

model | deep learning | data | cost function | way to update parameters | conv. nets 123

A brief primer on deep learning

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

model | deep learning | data | cost function | way to update parameters | conv. nets

convolutional neural networks:
Used for images. In each layer, scan over image with learned filters.

124

A brief primer on deep learning

model | deep learning | data | cost function | way to update parameters | conv. nets

http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/

convolutional neural networks:
Used for images. In each layer, scan over image with learned filters.

125

A brief primer on deep learning Back

