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The laws of physics have rotational, translational, 
and (unless you’re a particle physicist) parity symmetry.

We want machine learning models that also obey this symmetry.

e.g. a network is our model of “physics”. The input to the network is our system.
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Symmetry emerges when different ways of representing something “mean” the same thing. 
Symmetry of representation vs. objects
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Euclidean symmetry, E(3): 
Symmetry of 3D space
The freedom to choose your coordinate system

Symmetry emerges when different ways of representing something “mean” the same thing. 
Symmetry of representation vs. objects



Euclidean symmetry, E(3): 
Symmetry of 3D space
The freedom to choose your coordinate system

3D Translation

3D Rotation

3D Inversion

Mirrors

We transform 
between 
coordinate 
systems with...

Symmetry emerges when different ways of representing something “mean” the same thing. 
Symmetry of representation vs. objects
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Euclidean symmetry, E(3): 
Symmetry of 3D space
The freedom to choose your coordinate system

Symmetry of geometric objects
Looks the same under specific rotations, 
translations, and inversion (includes mirrors).

Symmetry emerges when different ways of representing something “mean” the same thing. 
Symmetry of representation vs. objects
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Neural networks are specially designed for different data types. 
Assumptions about the data type are built into how the network operates.

Arrays ⇨ Dense NN 2D images 
⇨ Convolutional NN

Text ⇨ Recurrent NN

Components are 
independent.

The same features can be 
found anywhere in an image. 
Locality.

Sequential data. Next 
input/output depends on 
input/output that has come 
before.

W x
Graph ⇨ Graph (Conv.) NN

3D physical data 
⇨ Euclidean NN

Data in 3D Euclidean 
space. Freedom to choose 
coordinate system.

Topological data. Nodes 
have features and network 
passes messages between 
nodes connected via edges.
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Neural networks are specially designed for different data types. 
Assumptions about the data type are built into how the network operates.
Thus, symmetries are encoded by tailoring network operations.
Arrays ⇨ Dense NN 2D images 

⇨ Convolutional NN
Text ⇨ Recurrent NN

Components are 
independent.

The same features can be 
found anywhere in an image. 
Locality.

Sequential data. Next 
input/output depends on 
input/output that has come 
before.

W x
Graph ⇨ Graph (Conv.) NN

3D physical data 
⇨ Euclidean NN

Data in 3D Euclidean 
space. Equivariant to 
choice of coordinate 
system.

No symmetry!

2D-translation symmetry 

(forward) time-translation symm.

permutation symmetry

3D Euclidean symmetry E(3): 
3D rotations, translations, and 

inversion

Topological data. Nodes 
have features and network 
passes messages between 
nodes connected via edges.
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H         -0.21463        0.97837        0.33136
C         -0.38325        0.66317       -0.70334
C         -1.57552        0.03829       -1.05450
H         -2.34514       -0.13834       -0.29630
C         -1.78983       -0.36233       -2.36935
H         -2.72799       -0.85413       -2.64566
C         -0.81200       -0.13809       -3.33310
H         -0.98066       -0.45335       -4.36774
C          0.38026        0.48673       -2.98192
H          1.14976        0.66307       -3.74025
C          0.59460        0.88737       -1.66708
H          1.53276        1.37906       -1.39070

Coordinates are most 
general, but sensitive to 
translations, rotations, and 
inversion.

Three ways to make models “symmetry-aware” for 3D data
e.g. How to make a model that “understands” the symmetry of atomic structures?
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Approach 1: 
Data Augmentation

Throw data at the problem and 
see what you get!

Approach 3: 
Invariant models
Equivariant models

If there’s no model that naturally 
handles coordinates, 
we will make one.

Approach 2: 
Invariant Inputs

Convert your data to invariant 
representations so the neural 
network can’t possibly mess it 
up.
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e.g. How to make a model that “understands” the symmetry of atomic structures?
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Approach 1: 
Data Augmentation

Throw data at the problem and 
see what you get!

Approach 3: 
Invariant models
Equivariant models

If there’s no model that naturally 
handles coordinates, 
we will make one.

Approach 2: 
Invariant Inputs

Convert your data to invariant 
representations so the neural 
network can’t possibly mess it 
up.
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H         -2.34514       -0.13834       -0.29630
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C         -0.81200       -0.13809       -3.33310
H         -0.98066       -0.45335       -4.36774
C          0.38026        0.48673       -2.98192
H          1.14976        0.66307       -3.74025
C          0.59460        0.88737       -1.66708
H          1.53276        1.37906       -1.39070

Coordinates are most 
general, but sensitive to 
translations, rotations, and 
inversion.

Three ways to make models “symmetry-aware” for 3D data
e.g. How to make a model that “understands” the symmetry of atomic structures?



Invariance vs. Equivariance (covariance) e.g. in 3D space

Does NOT change ⇨ Invariant
Changes deterministically ⇨ Equivariant

Properties of a vector 
under E(3)

Translation

Rotation

Inversion

3D
 ve

cto
r

14
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For 3D data, data augmentation is expensive, ~500 fold augmentation 
and you still don’t get the guarantee of equivariance (it’s only emulated).

training without rotational symmetry

training with symmetry



16

For a function to be equivariant means that we can act on our inputs with g 
OR act our outputs with g and we get the same answer (for every operation).
For a function with invariant input (e.g. invariant models) means g is the identity (no change).

Layerin outg

Layerin outg=
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Why limit yourself to equivariant functions? 
You can substantially shrink the space of functions you need to optimize over.
This means you need less data to constrain your function.

All learnable functions

All learnable 
equivariant 
functions

All learnable 
functions 
constrained 
by your data.

Functions you 
actually wanted 
to learn.
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Why not limit yourself to invariant functions? 
You have to guarantee that your input features already
contain any necessary equivariant interactions (e.g. cross-products).

All learnable 
equivariant 
functions

Functions you actually 
wanted to learn.All learnable 

invariant 
functions.

All invariant 
functions 
constrained by 
your data.

OR



How Euclidean Neural Networks achieve equivariance to Euclidean symmetry
(high level)

Euclidean Neural Networks encompass
Tensor Field Networks (arXiv:1802.08219)
Clebsch-Gordon Nets (arXiv:1806.09231)

3D Steerable CNNs (arXiv:1807.02547)
Cormorant (arXiv:1906.04015)

SE(3)-Transformers (arXiv:2006.10503)
e3nn (github.com/e3nn/e3nn)

(Technically, e3nn is the only one that implements inversion)

Some relevant folks… Mario Geiger, Ben Miller, 
Risi Kondor, Taco Cohen, Maurice Weiler, Daniel 

E. Worrall, Fabian B. Fuchs, Max Welling, 
Nathaniel Thomas, Shubhendu Trivedi,...



Euclidean Neural Networks are similar to convolutional neural networks...



Equivariant convolutional filters are based on 
learned radial functions and spherical harmonics...

=
Neighbor  
atoms

Convolution 
center

Euclidean Neural Networks are similar to convolutional neural networks...



Equivariant convolutional filters are based on 
learned radial functions and spherical harmonics...

=
Neighbor  
atoms

Convolution 
center

Euclidean Neural Networks are similar to convolutional neural networks...

Spherical harmonics of the same L transform 
together under rotation g.

Spherical harmonics transform in the same manner 
as the irreducible representations of SO(3).



Equivariant convolutional filters are based on 
learned radial functions and spherical harmonics...
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Euclidean Neural Networks are similar to convolutional neural networks...



Equivariant convolutional filters are based on 
learned radial functions and spherical harmonics...

=
Neighbor  
atoms

Convolution 
center

Euclidean Neural Networks are similar to convolutional neural networks...

...and geometric tensor algebra allow us to 
generalize scalar operations to more complex 
geometric tensors.

e.g. How to multiply two vectors?

scalar

vector

3x3 
matrix
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The input to our network is geometry and features on that geometry.

26

geometry = [[x0, y0, z0],[x1, y1, z1]]
features = [

[m0, v0y, v0z, v0x, a0y, a0z, a0x]
[m1, v1y, v1z, v1x, a1y, a1z, a1x]

] 
...
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geometry = [[x0, y0, z0],[x1, y1, z1]]
features = [

[m0, v0y, v0z, v0x, a0y, a0z, a0x]
[m1, v1y, v1z, v1x, a1y, a1z, a1x]

] 
Rs = [(1, 0, 1), (1, 1, -1), (1, 1, -1)]
# OR
Rs = [(1, 0, 1), (2, 1, -1)]

1 Scalar (L=0) 
(even parity)

2 Vectors (L=1)
(odd parity)

“Representation List”
 Notation
Rs = [(copies, L, parity),...]

The input to our network is geometry and features on that geometry.
We categorize our features by how they transform under rotation and parity
as irreducible representations of O(3).



What does equivariance get you?



29

Given a molecule and a rotated copy, 
predicted forces are the same up to rotation.
(Predicted forces are equivariant to rotation.)
Additionally, networks generalize to molecules with similar motifs.
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Primitive unit cells, conventional unit cells, and supercells of the same crystal 
produce the same output (assuming periodic boundary conditions).



O
1s 2s 2s 2p  2p  3d

H
1s 2s 2p

H
1s 2s 2p
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E(3)NNs can express tensors of atomic orbitals and predict molecular 
Hamiltonians in any orientation from seeing a single example.



geometry features

We can convert local geometry into features and vice versa 
via spherical harmonic projections.

E(3)NNs can manipulate geometry, 
which means they can be used for generative models such as autoencoders.



E(3)NNs are extremely data efficient.



E(3)NNs for molecular dynamics (coming soon)
Water

Data from: Zhang, L. et al. E. (2018). PRL, 120(14), 143001. 

Simon 
Batzner 

Boris
Kozinsky

E(3)NNs are extremely data efficient.

(meV/Å) (meV/Å)



E(3)NNs for molecular dynamics (coming soon)
Water

E(3)NNs for phonon density of states (arxiv:2009.05163)
Training set of 1,200 crystal structures with 64 atom types.
Test set includes atom types never seen. Used to find high Cv.
Data from Materials Project

35

Simon 
Batzner 

Boris
Kozinsky

Zhantao Chen
Nina Andrejevic
Mingda Li

E(3)NNs are extremely data efficient.

Data from: Zhang, L. et al. E. (2018). PRL, 120(14), 143001. 

(meV/Å) (meV/Å)

https://arxiv.org/abs/2009.05163


Features that are consequences of fully treating Euclidean symmetry...



Vector

Pseudo-
vector

Double-
Headed
Ray

Spiral

Rs_vector = [(1, 1, -1)]

Rs_pseudovector = [(1, 1, 1)]

Rs_doubleray = [(1, 2, 1)]

Rs_spiral = [(1, 2, -1)]

Feature 1: All data (input, intermediates, output) in E(3)NNs are geometric tensors.
Geometric tensors are the “data types” of 3D space and have many forms.



Feature 1: All data (input, intermediates, output) in E(3)NNs are geometric tensors.
Geometric tensors are the “data types” of 3D space and have many forms.

Rs_s_orbital = [(1, 0,  1)]

Rs_p_orbital = [(1, 1, -1)]

Rs_d_orbital = [(1, 2,  1)]

Rs_f_orbital = [(1, 3, -1)]
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Feature 2: The outputs have equal or higher symmetry than the inputs.
Curie’s principle (1894):

input
random 
model 1

random 
model 2

random 
model 3

Tetrahedron

Octahedron

“When effects show certain asymmetry, this asymmetry must be found 
  in the causes that gave rise to them.”

T. E. Smidt, M. Geiger, B. K. Miller. https://arxiv.org/abs/2007.02005 (2020)

https://arxiv.org/abs/2007.02005


“When effects show certain asymmetry, this asymmetry must be found 
  in the causes that gave rise to them.”
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Feature 2: The outputs have equal or higher symmetry than the inputs.
Curie’s principle (1894):

input
random 
model 1

random 
model 2

random 
model 3

Tetrahedron

Octahedron

Implement group equivariance 

and get all subgroups for FREE!

e.g. space groups, point groups

T. E. Smidt, M. Geiger, B. K. Miller. https://arxiv.org/abs/2007.02005 (2020)

https://arxiv.org/abs/2007.02005
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Feature 2: The outputs have equal or higher symmetry than the inputs.
Symmetry compiler -- can’t fit a model that does symmetrically make sense

T. E. Smidt, M. Geiger, B. K. Miller. https://arxiv.org/abs/2007.02005 (2020)

https://arxiv.org/abs/2007.02005
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✓ ✗

Feature 2: The outputs have equal or higher symmetry than the inputs.
Symmetry compiler -- can’t fit a model that does symmetrically make sense

T. E. Smidt, M. Geiger, B. K. Miller. https://arxiv.org/abs/2007.02005 (2020)

https://arxiv.org/abs/2007.02005
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Feature 2: The outputs have equal or higher symmetry than the inputs.
Symmetry compiler -- can’t fit a model that does symmetrically make sense

Network 
predicts 
degenerate 
outcomes!

✓ ✗

T. E. Smidt, M. Geiger, B. K. Miller. https://arxiv.org/abs/2007.02005 (2020)

https://arxiv.org/abs/2007.02005
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Feature 2: The outputs have equal or higher symmetry than the inputs.
Symmetry compiler -- can’t fit a model that does symmetrically make sense

Network 
predicts 
degenerate 
outcomes!The network does NOT 

know the symmetry of 

the inputs or outputs! It 

only acts equivariantly.

✓ ✗

T. E. Smidt, M. Geiger, B. K. Miller. https://arxiv.org/abs/2007.02005 (2020)

https://arxiv.org/abs/2007.02005


✓ ✗
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→ Learns anisotropic inputs. → Model can fit.

Input

Output

L = 0 + 2 + 4L = 0

Use gradients to “find” what’s missing.

Feature 3: We can find data that is implied by symmetry.
Using gradients of loss wrt input we can find symmetry breaking “order parameters”

Irreps with
even parity 
L ≥ 2  break 
degeneracy 
between x and 
y directions.

T. E. Smidt, M. Geiger, B. K. Miller. https://arxiv.org/abs/2007.02005 (2020)

https://arxiv.org/abs/2007.02005
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Feature 3: We can find data that is implied by symmetry.
Using gradients of loss wrt input we can find symmetry breaking “order parameters”

Octahedral tilting in perovskites (M3+ ⊕ R4+) ⇨
Network learns equal magnitude pseudovector order parameters on B site with proper spatial patterning.

T. E. Smidt, M. Geiger, B. K. Miller. https://arxiv.org/abs/2007.02005 (2020)

https://arxiv.org/abs/2007.02005
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developers of e3nn

Mario Geiger
(EPFL)

Ben Miller
(U of Amsterdam, 

formerly FU Berlin)

Tess Smidt
(LBNL)

Kostiantyn 
Lapchevskyi

e3nn: a modular PyTorch framework for Euclidean neural networks
https://github.com/e3nn/e3nn

Utilities and classes for
● building E(3) equivariant neural networks
● manipulating geometric tensors
● visualizing spherical harmonics

https://github.com/e3nn/e3nn
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e3nn: a modular PyTorch framework for Euclidean neural networks
https://github.com/e3nn/e3nn

Creating a basic convolution E(3) neural network

import torch
from e3nn import rs
from e3nn.networks import GatedConvParityNetwork
torch.set_default_dtype(torch.float64)

N_atom_types = 3  # For example H, C, O
Rs_in = [(N_atom_types, 0, 1)]  # Input are scalars
Rs_out = [(1, 1, -1)]  # Predict vectors

model_kwargs = {
'Rs_in': Rs_in, 'Rs_out': Rs_out, 'mul': 4, 'lmax': 2, 
'layers': 3, 'max_radius': r_max, 'number_of_basis': 10,

}

model = GatedConvParityNetwork(**model_kwargs)

https://github.com/e3nn/e3nn
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e3nn: a modular PyTorch framework for Euclidean neural networks
https://github.com/e3nn/e3nn
Convert between Cartesian tensors (with symmetric indices) and Irrep tensors and 
calculate degrees of freedom (e.g. elasticity tensor)

import torch
from e3nn import rs
from e3nn.tensor import CartesianTensor
torch.set_default_dtype(torch.float64)

rank4 = torch.zeros(3, 3, 3, 3)  # Placeholder
Rs, Q = CartesianTensor(rank4, 'ijkl=jikl=klij').to_irrep_transformation()
print(“Representations: ”, Rs)
print(“Degrees of freedom: ”, rs.dim(Rs))

>> Representations: [(2, 0, 1), (2, 2, 1), (1, 4, 1)]
>> Degrees of freedom: 21

https://github.com/e3nn/e3nn
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e3nn: a modular PyTorch framework for Euclidean neural networks
https://github.com/e3nn/e3nn
Plot 3x3 matrix as linear combination of spherical harmonics.

...

# Symmetric Matrix
M = torch.randn(3,3)
M = M + M.transpose(0, 1)

# Plot matrix
px.imshow(M)

matrix = CartesianTensor(M, formula='ij=ji').to_irrep_tensor()
r, f = SphericalTensor.from_irrep_tensor(matrix).plot()

# Plot SH signal
surface_plot = lambda r, f: go.Surface(

x=r[..., 0], y=r[..., 1], z=r[..., 2], 
surfacecolor=f, showscale=False)

go.Figure([surface_plot(r, f)])

https://github.com/e3nn/e3nn


collaborators of e3nn

Boris
Kozinsky

Simon 
Batzner 

Josh 
Rackers

Thomas
Hardin

Eugene 
Kwan

Frank
Noé

Mingda
Li

Nina 
Andrejevic

 Zhantao 
Chen

Claire
West



52Feel free to reach out if 
you have any questions!

Tess Smidt
tsmidt@lbl.gov

A Quick Recap!

3D Euclidean symmetry: 
rotations, translation, inversion
Different coordinate systems

⇨ same physical system

Euclidean Neural Networks are equivariant to E(3)
Convolutional filters 

⇨ learned radial functions 
     and spherical harmonics

Geometric tensor algebra
Equivariant nonlinearities (did not discuss)

Equivariance can have unintended features.
1) Symmetry specific data types
2) Output symmetry equal to inputs

● Implement group equivariance and 
get all subgroups for FREE!

● Symmetry compilers
3) Grad loss wrt input can break symmetry



Resources on Euclidean neural networks:
e3nn.org

e3nn Code (PyTorch):
http://github.com/e3nn/e3nn
“quick” tutorial: 
https://tinyurl.com/e3nn-quick-tutorial-202011
e3nn_tutorial:
http://blondegeek.github.io/e3nn_tutorial/
Papers:

Tensor Field Networks (arXiv:1802.08219)
Clebsch-Gordon Nets (arXiv:1806.09231)

3D Steerable CNNs (arXiv:1807.02547)
Cormorant (arXiv:1906.04015)

SE(3)-Transformers (arXiv:2006.10503)
tfnns on proteins (arXiv:2006.09275)

e3nn on QM9 (arXiv:2008.08461)
e3nn for symm breaking (arXiv:2008.08461)

E(3) and equivariance in ML (chemrxiv.12935198.v1)
e3nn for phonon DOS (arxiv:2009.05163)

My past talks (look for video / slide links):
https://blondegeek.github.io/talks 53Feel free to reach out if 

you have any questions!
Tess Smidt
tsmidt@lbl.gov

A Quick Recap!

3D Euclidean symmetry: 
rotations, translation, inversion
Different coordinate systems

⇨ same physical system

Euclidean Neural Networks are equivariant to E(3)
Convolutional filters 

⇨ learned radial functions 
     and spherical harmonics

Geometric tensor algebra
Equivariant nonlinearities (did not discuss)

Equivariance can have unintended features.
1) Symmetry specific data types
2) Output symmetry equal to inputs

● Implement group equivariance and 
get all subgroups for FREE!

● Symmetry compilers
3) Grad loss wrt input can break symmetry

https://e3nn.org/
https://blondegeek.github.io/e3nn_tutorial/
https://arxiv.org/abs/1802.08219
https://arxiv.org/abs/1806.09231
https://arxiv.org/abs/1807.02547
https://arxiv.org/abs/1906.04015
https://arxiv.org/abs/2006.10503
https://arxiv.org/abs/2006.09275
https://arxiv.org/abs/2008.08461
https://arxiv.org/abs/2008.08461
https://doi.org/10.26434/chemrxiv.12935198.v1
https://arxiv.org/abs/2009.05163
https://blondegeek.github.io/talks


Calling in backup (slides)!

54
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Applications so far...

● Finding order parameters of 2nd order structural phase transitions
● Molecular dynamics (Harvard)
● Molecule and crystal property prediction (FU Berlin)
● Inverting invariant representations of atomic geometries (Sandia)
● Autoencoding Geometry
● Predicting molecular Hamiltonians (TU Berlin)
● Long range interactions (FU Berlin, TU Berlin)
● Electron density prediction for large molecules (Sandia)
● Predicting chemical shifts for NMR (Merck, MIT)
● Conditional protein design (UW)
● Inverse design of optical properties of nanoparticle assemblies (LBL and UW)
● Phonon properties of crystal structures (MIT)
● Anharmonic elastic properties of crystal structures (UTEP)
● ...



Let g be an 
element of 
SO(3)

a-1 +a0 +a1

=

D is the Wigner-D matrix. 
It has shape                                
and is a function of g.

Spherical harmonics of a given L transform together under rotation.

g

56

b-1 +b0 +b1

D



Predict ab initio forces for molecular dynamics
Preliminary results originally presented at 
APS March Meeting 2019.
Paper in progress.

57

Testing on liquid water, Euclidean neural networks (Tensor-Field 
Molecular Dynamics) require less data to train than traditional 
networks to get state of the art results.

Data set from: [1] 
Zhang, L. et al. E. (2018). 
PRL, 120(14), 143001. 

Boris
Kozinsky

Simon 
Batzner 



Euclidean neural networks can manipulate geometry, 
which means they can be used for generative models such as autoencoders.



geometry features

To encode/decode, we have to be able to 
convert geometry into features and vice versa.
We do this via spherical harmonic projections.

Euclidean neural networks can manipulate geometry, 
which means they can be used for generative models such as autoencoders.
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Equivariant neural networks can learn to invert invariant representations.

Which can be used 
to recover geometry.

Network can predict 
spherical harmonic 
projection...

Invariant features + 
coordinate frame

ENN Peak finding

Josh 
Rackers

Thomas
Hardin



Pooling Pooling Unpooling Unpooling

We can also build an autoencoder for geometry: e.g. Autoencoder on 3D Tetris
Centers deleted

Centers deleted



Pooling Pooling Unpooling Unpooling

We can also build an autoencoder for geometry: e.g. Autoencoder on 3D Tetris



Other  
atoms

Convolution 
center

We encode the symmetries of 3D Euclidean space (3D translation- and 3D rotation-equivariance).

63

We use points. Images of atomic systems are sparse and imprecise. 

vs.

We use continuous convolutions 
with atoms as convolution 
centers.

Euclidean Neural Networks are similar to convolutional neural networks...



We encode the symmetries of 3D Euclidean space (3D translation- and 3D rotation-equivariance).

64

We use points. Images of atomic systems are sparse and imprecise. 

vs.
Other  
atoms

Convolution 
center

We use continuous convolutions 
with atoms as convolution 
centers.

Euclidean Neural Networks are similar to convolutional neural networks...



We encode the symmetries of 3D Euclidean space (3D translation- and 3D rotation-equivariance).

We use continuous convolutions 
with atoms as convolution 
centers.
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We use points. Images of atomic systems are sparse and imprecise. 

vs.

Euclidean Neural Networks are similar to convolutional neural networks...

Other  
atoms

Convolution 
center



Translation equivariance
Convolutional neural 
network ✓

Rotation equivariance
Data augmentation
Radial functions (invariant) 
Want a network that both 
preserves geometry and 
exploits symmetry.
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Invariant featurizations can be very expressive if well-crafted
Many invariant featurizations use equivariant operations
e.g. a (simplified) SOAP kernel for ethane molecule C2H6

(1) Project neighbors of given atom 
onto spherical harmonics 
(equivariant quantity). 

(2) Interact signals from different 
atoms via tensor dot product 
(equivariant operation) to produce 
scalars (invariant quantity).

(3) Give scalars to model.

(1)

(2) (3)

(Favored for kernel methods)



68

For a function to be equivariant means that we can act on our inputs with g 
OR act our outputs with g and we get the same answer (for every operation).
For a function to be invariant means g is the identity (no change).

Layerin outg

Layerin outg=
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Why limit yourself to equivariant functions? 
You can substantially shrink the space of functions you need to optimize over.
This means you need less data to constrain your function.

All learnable functions

All learnable 
equivariant 
functions

All learnable 
functions 
constrained 
by your data.

Functions you 
actually wanted 
to learn.
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Why not limit yourself to invariant functions? 
You have to guarantee that your input features already
contain any necessary equivariant interactions (e.g. cross-products).

All learnable 
equivariant 
functions

Functions you actually 
wanted to learn.All learnable 

invariant 
functions.

All invariant 
functions 
constrained by 
your data.

OR
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Neural networks are specially designed for different data types. 
Assumptions about the data type are built into how the network operates.

Arrays ⇨ Dense NN 2D images 
⇨ Convolutional NN

Text ⇨ Recurrent NN

Components are 
independent.

The same features can be 
found anywhere in an image. 
Locality.

Sequential data. Next 
input/output depends on 
input/output that has come 
before.

W x
Graph ⇨ Graph (Conv.) NN

3D physical data 
⇨ Euclidean NN

Data in 3D Euclidean 
space. Freedom to choose 
coordinate system.

Topological data. Nodes 
have features and network 
passes messages between 
nodes connected via edges.
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Neural networks are specially designed for different data types. 
Assumptions about the data type are built into how the network operates.
Symmetries emerge from these assumptions.
Arrays ⇨ Dense NN 2D images 

⇨ Convolutional NN
Text ⇨ Recurrent NN

Components are 
independent.

The same features can be 
found anywhere in an image. 
Locality.

Sequential data. Next 
input/output depends on 
input/output that has come 
before.

W x
Graph ⇨ Graph (Conv.) NN

3D physical data 
⇨ Euclidean NN

Data in 3D Euclidean 
space. Equivariant to 
choice of coordinate 
system.

No symmetry!

2D-translation symmetry 

(forward) time-translation symm.

permutation symmetry

3D Euclidean symmetry E(3): 
3D rotations translations and 

inversion

Topological data. Nodes 
have features and network 
passes messages between 
nodes connected via edges.



✓ ✓ ✓ ✓

If you can craft a good representation -- great! 
But deep learning’s specialty is feature learning.
So, maybe use a different machine learning approach (e.g. kernel methods).

Neural networks can’t mess up invariant representations.
You can use ANY neural network with an invariant representation.
Invariant representations can be used for other machine learning algorithms 
(e.g. kernel methods).
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Analogous to... the laws of (non-relativistic) physics have Euclidean symmetry, 
even if systems do not.

The network is our model of “physics”. The input to the network is our system.

q

B q

q q

q
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A Euclidean symmetry preserving network produces outputs that preserve 
the subset of symmetries induced by the input.

O(3) Oh Pm-3m
(221)

SO(2) + 
mirrors

(C∞v)

3D rotations and 
inversions

2D rotation and 
mirrors along 
cone axis

Discrete rotations 
and mirrors

Discrete rotations, 
mirrors, and translations
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Properties of a system must be compatible with symmetry.
Which of these situations (inputs / outputs) are symmetrically allowed / forbidden?

m m

m m

m m

a.

b.

c.
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m m

m m

m m

a.

b.

c.

✓

✗

✗

Properties of a system must be compatible with symmetry.
Which of these situations (inputs / outputs) are symmetrically allowed / forbidden?
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m m

m m

m m

a.

b.

c.

✓

✗

✗

m 2m

Properties of a system must be compatible with symmetry.
Which of these situations (inputs / outputs) are symmetrically allowed / forbidden?
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m m

m m

m m

a.

b.

c.

✓

✗

✗

m 2m

m m
g

Properties of a system must be compatible with symmetry.
Which of these situations (inputs / outputs) are symmetrically allowed / forbidden?
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Equivariance can have unintuitive consequences.
Partition graph with permutation equivariant function into two sets using ordered labels.

Predict node labels
[0, 1] vs. [1, 0]
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Equivariance can have unintuitive consequences.
Partition graph with permutation equivariant function into two sets using ordered labels.
You can’t due to degeneracy.

[0, 1]
[1, 0] [0, 1]

[1, 0]

There’s nothing to distinguish one 
partition to be “first” vs. “second”.

Predict node labels
[0, 1] vs. [1, 0]



Convolutions: Local vs. Global Symmetry
Convolutions capture local symmetry. Interaction of features in later layers yields global symmetry. 
e.g. Coordination environments in crystals 

Atomic systems form geometric motifs that can 
appear at multiple locations and orientations.

(Local symmetry)

Space group:
Symmetry of unit cell

(Global symmetry)
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Translation symmetry in 2D: 

Features “mean” the same thing in any location.

Symmetry emerges when different ways of representing something “mean” the same thing. 
Representation can have symmetry, operations can preserve symmetry, and objects can have symmetry.

✓

✗ ✓

✓
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Translation symmetry in 2D: 

Features “mean” the same thing in any location.

Symmetry emerges when different ways of representing something “mean” the same thing. 
Representation can have symmetry, operations can preserve symmetry, and objects can have symmetry.

Symmetry of 2D objects
Boundaries “break” global translation symmetry. 

Periodic boundary conditions preserve 
discrete translation symmetry.

✓

✗ ✓

✓
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Permutation symmetry, SN:
Symmetry of sets
The freedom to list things in any order

Symmetry emerges when different ways of representing something “mean” the same thing. 
Representation can have symmetry, operations can preserve symmetry, and objects can have symmetry.
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Permutation symmetry, SN:
Symmetry of sets
The freedom to list things in any order

Symmetry of elements of a graph
Graph automorphism, specific nodes are 
indistinguishable (same global connectivity)

Symmetry emerges when different ways of representing something “mean” the same thing. 
Representation can have symmetry, operations can preserve symmetry, and objects can have symmetry.



A bit of group theory! Don’t worry just a bit!
Formally, what are invariant vs. equivariant functions

function (neural network)...vector in vector space
inputs

outputs

weights

...which is equivalent to writing.
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x, this has to be the case…
weights must be “scalars”equivariant to x if



A bit of group theory! Don’t worry just a bit!
Formally, what are invariant vs. equivariant functions

function (neural network)...

element of group

representation of g acting on vector space  

vector in vector space
inputs

outputs

weights

...which is equivalent to writing.

If we want to be equivariant to 
x, this has to be the case…
weights must be “scalars”equivariant to x if



A bit of group theory! Don’t worry just a bit!
Formally, what are invariant vs. equivariant functions

function (neural network)...

element of group

representation of g acting on vector space  

vector in vector space
inputs

outputs

weights

...which is equivalent to writing.

If we want to be equivariant to 
x, this has to be the case…
weights must be “scalars”equivariant to x if

(special case) invariant to x if
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M. Zaheer et al, Deep Sets, NeurIPS 2017
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Convolutional neural networks can “cheat” by being sensitive to “boundaries”.
(e.g. Predict geodesics on projected maps with and without periodic boundary conditions)

User: Stebe
https://en.wikipedia.org/wiki/Gall-Peters_projection

✓ ✗ ✓

Nodes can be distinguished due 
to differing topology by latitude 
(e.g. poles)!

Boundaries break symmetry. Pixels cannot be distinguished due 
to translation equivariance.
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In the physical sciences...
What our our data types? 
3D geometry and geometric tensors...
...which transform predictably under 3D rotation, translation, and inversion.

These data types assume Euclidean symmetry.
⇨ Thus, we need neural networks that preserve Euclidean symmetry.
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Scalars
● Energy
● Mass
● Isotropic *

Vectors
● Force
● Velocity
● Acceleration
● Polarization

Pseudovectors
● Angular momentum
● Magnetic fields

Matrices, Tensors, …
● Moment of Inertia
● Polarizability
● Interaction of multipoles
● Elasticity tensor (rank 4)

m

Atomic orbitals

Output of 
Angular 
Fourier 
Transforms

Vector fields on 
spheres 
(e.g. B-modes 
of the Cosmic 
Microwave 
Background)

Geometric tensors take many forms. They are a general data type beyond materials.



Our unit test: Trained on 3D Tetris shapes in one orientation, 
these network can perfectly identify these shapes in any orientation.

TR
A

IN
TE

ST

97

Chiral
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Several groups converged on similar ideas around the same time.

Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
(arXiv:1802.08219)
Tess Smidt*, Nathaniel Thomas*, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, Patrick Riley

Points, nonlinearity on norm of tensors

Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network
(arXiv:1806.09231)
Risi Kondor, Zhen Lin, Shubhendu Trivedi

Only use tensor product as nonlinearity, no radial function

3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data
(arXiv:1807.02547)
Mario Geiger*, Maurice Weiler*, Max Welling, Wouter Boomsma, Taco Cohen

Efficient framework for voxels, gated nonlinearity

*denotes equal contribution
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Several groups converged on similar ideas around the same time.

Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
(arXiv:1802.08219)
Tess Smidt*, Nathaniel Thomas*, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, Patrick Riley

Points, nonlinearity on norm of tensors

Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network
(arXiv:1806.09231)
Risi Kondor, Zhen Lin, Shubhendu Trivedi

Only use tensor product as nonlinearity, no radial function

3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data
(arXiv:1807.02547)
Mario Geiger*, Maurice Weiler*, Max Welling, Wouter Boomsma, Taco Cohen

Efficient framework for voxels, gated nonlinearity

*denotes equal contribution

Tensor field networks + 3D steerable CNNs 
= Euclidean neural networks (e3nn)



Let g be a 3d 
rotation matrix.

a-1 +a0 +a1

=

D is the Wigner-D matrix. 
It has shape                                
and is a function of g.

Spherical harmonics of a given L transform together under rotation.

g
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b-1 +b0 +b1

D



Convolve

Bloom
Make points to cluster

Symmetric Cluster
Cluster bloomed points

Combine 
Convolve with point origins of 

cluster members

Geometry

N
ew

 G
eom

etry 

How to encode (Pooling layer). Recursively convert geometry to features.



1st

2nd

Convolve

Bloom
Make new points

Cluster 
Merge duplicate points

Combine 
Convolve with origin point

of new points

Geometry

N
ew

 G
eom

etry 

How to decode (Unpooling layer). Recursively convert features to geometry.
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Discrete geometry Discrete geometry

Reduce 
geometry to 
single point.

Create 
geometry from 
single point.

We want to convert geometric information (3D coordinates of atomic positions) 
into features on a trivial geometry (a single point)
and back again.

Single point with continuous
latent representation
(N dimensional vector)
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Reduce 
geometry to 
single point.

Create 
geometry from 
single point.

Atomic structures are 
hierarchical and can be 
constructed from 
recurring geometric 
motifs. 

We want to convert geometric information (3D coordinates of atomic positions) 
into features on a trivial geometry (a single point)
and back again.

Discrete geometry Discrete geometry
Single point with continuous
latent representation
(N dimensional vector)
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Reduce 
geometry to 
single point.

Create 
geometry from 
single point.

+ Encode geometry
+ Encode hierarchy

(Need to do this in a recursive manner)

We want to convert geometric information (3D coordinates of atomic positions) 
into features on a trivial geometry (a single point)
and back again.

Discrete geometry Discrete geometry
Single point with continuous
latent representation
(N dimensional vector)

Atomic structures are 
hierarchical and can be 
constructed from 
recurring geometric 
motifs. 

+ Decode geometry
+ Decode hierarchy



To autoencode, we have to be able to convert 
geometry into features and vice versa.
We do this via spherical harmonic projections.
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...where the electrons are...

Given an atomic structure,

E
ne

rg
y 

(e
V

)

Momentum

...and what the electrons are doing.

...use quantum theory and 
supercomputers to determine...

What a computational materials physicist does:

Structure

Properties

Si



Quantum Theory / Molecular dynamics
 + Supercomputers Properties

Hypothesize

Inverse Design

Zooooom!

Map

Structure

We want to use deep learning to speed up calculations, hypothesize new structures, 
perform inverse design, and organize these relations.

Primer?

#
#


Quantum Theory / Molecular dynamics
 + Supercomputers Properties

Hypothesize

Inverse Design

Zooooom!

Map

Structure

We want to use deep learning to speed up calculations, hypothesize new structures, 
perform inverse design, and organize these relations.

The problems 
start here
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Given a single example of a degenerate solution, 
it knows what other solutions are possible by symmetry.
(Useful for ensuring you’re not biasing your sampling.)
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To be rotation-equivariant means that we can rotate our inputs 
OR rotate our outputs and we get the same answer (for every operation).

Layerin outRot

Layerin outRot=



For L=1 ⇨ L=1, the filters will be a learned, radially-dependent linear 
combinations of the L = 0, 1, and 2 spherical harmonics.

112

L=2

Random filters for  
L=1 ⇨ L=1… 
(3 in L=1 channels by 
 3 out L=1 channels) 

… as a function of 
increasing r.
Time showing filter for 
varying r, where
0 ≤ r ≤ rmax

.

(+ / –)
Radial distance is 
magnitude 
as a function of 
angle
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Predictions for Oh symmetry
Ground Truth

Prediction of 
network trained 
with symmetry 
breaking input 
and given 
symmetry 
breaking input 
along z.

Prediction of 
network trained 
with symmetry 
breaking input 
but given trivial 
input 
(single scalar).

Superposition of 6 
rotationally 
degenerate solutions.



A brief primer on deep learning

deep learning ⊂ machine learning ⊂ artificial intelligence

model  |   deep learning  |  data  |  cost function  |  way to update parameters  |  conv. nets 115

Skip?

#


model (“neural network”):
Function with learnable parameters.

model  |   deep learning  |  data  |  cost function  |  way to update parameters  |  conv. nets 116

A brief primer on deep learning



model (“neural network”):
Function with learnable parameters.

Linear 
transformation

Element-wise 
nonlinear 
function

Learned
Parameters

Ex: "Fully-connected" 
network

model  |   deep learning  |  data  |  cost function  |  way to update parameters  |  conv. nets 117

A brief primer on deep learning



model (“neural network”):
Function with learnable parameters.

Neural networks with multiple layers 
can learn more complicated functions.

Learned
Parameters
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Ex: "Fully-connected" 
network

A brief primer on deep learning



model (“neural network”):
Function with learnable parameters.

Neural networks with multiple layers 
can learn more complicated functions.

Learned
Parameters

model  |   deep learning  |  data  |  cost function  |  way to update parameters  |  conv. nets 119

Ex: "Fully-connected" 
network

A brief primer on deep learning



deep learning:
Add more layers.

model  |   deep learning  |  data  |  cost function  |  way to update parameters  |  conv. nets 120

A brief primer on deep learning



data:
Want lots of it. Model has many parameters. Don't want to easily overfit.

https://en.wikipedia.org/wiki/Overfitting

model  |   deep learning  |  data  |  cost function  |  way to update parameters  |  conv. nets 121

A brief primer on deep learning



cost function:
A metric to assess how well the model is performing. 
The cost function is evaluated on the output of the model.
Also called the loss or error.

model  |   deep learning  |  data  |  cost function  |  way to update parameters  |  conv. nets 122

A brief primer on deep learning



way to update parameters:
Construct a model that is differentiable 

Easiest to do with differentiable programming frameworks: e.g. Torch, TensorFlow, JAX, ...
Take derivatives of the cost function (loss or error) wrt to learnable parameters.
This is called backpropogation (aka the chain rule).

error

model  |   deep learning  |  data  |  cost function  |  way to update parameters  |  conv. nets 123

A brief primer on deep learning



http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

model  |   deep learning  |  data  |  cost function  |  way to update parameters  |  conv. nets

convolutional neural networks:
Used for images. In each layer, scan over image with learned filters.

124

A brief primer on deep learning



model  |   deep learning  |  data  |  cost function  |  way to update parameters  |  conv. nets

http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/

convolutional neural networks:
Used for images. In each layer, scan over image with learned filters.
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A brief primer on deep learning Back


