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The laws of physics have rotational, translational,
and (unless you're a particle physicist) parity symmetry.

We want machine learning models that also obey this symmetry.

e.g. a network is our model of “physics”. The input to the network is our system.
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Symmetry emerges when different ways of representing something “mean” the same thing.
Symmetry of representation vs. objects
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The freedom to choose your coordinate system
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Symmetry emerges when different ways of representing something “mean” the same thing.
Symmetry of representation vs. objects

Euclidean symmetry, E(3): 3D Translation

Symmetry of 3D space . We transform
The freedom to choose your coordinate system between
coordinate

systems with...

3D Rotation
Mirrors G
hﬂ 3D Inversion




Symmetry emerges when different ways of representing something “mean” the same thing.
Symmetry of representation vs. objects

Euclidean symmetry, E(3):
Symmetry of 3D space Symmetry of geometric objects

The freedom to choose your coordinate system Looks the same under specific rotations,

translations, and inversion (includes mirrors).




Symmetry emerges when different ways of representing something “mean” the same thing.
Symmetry of representation vs. objects

Euclidean symmetry, E(3):
Symmetry of 3D space Symmetry of geometric objects

The freedom to choose your coordinate system Looks the same under specific rotations,
translations, and inversion (includes mirrors).
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Neural networks are specially designed for different data types.
Assumptions about the data type are built into how the network operates.

Arrays » Dense NN 2D images Text » Recurrent NN Graph » Graph (Conv.) NN
= Convolutional NN
Components are The same features can be Sequential data. Next Topological data. Nodes
independent. found anywhere in an image. input/output depends on have features and network
Locality. input/output that has come passes messages between
before. nodes connected via edges.

space. Freedom to choose
coordinate system.

K 3D physical data \
2 Euclidean NN
Data in 3D Euclidean

N




Neural networks are specially designed for different data types.
Assumptions about the data type are built into how the network operates.
Thus, symmetries are encoded by tailoring network operations.

Arrays » Dense NN 2D images Text » Recurrent NN Graph » Graph (Conv.) NN
= Convolutional NN

No symmetry! [ (forward) time-translation symm. }
| A 4 A J
[ 2D-translation symmetry 1 - [ permutation symmetry }
| | -,
Components are The same features can be Sequential data. Next Topological data. Nodes
independent. found anywhere in an image. input/output depends on have features and network
Locality. input/output that has come passes messages between
before. nodes connected via edges.
3D physical data \
= Euclidean NN
3D Euclidean symmetry E(3): ﬁ'
3D rotations, translations, and '{:}‘
inversion
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Three ways to make models “symmetry-aware” for 3D data
e.g. How to make a model that “understands” the symmetry of atomic structures?

To@momo@maoaEzaoaam
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Coordinates are most
general, but sensitive to
translations, rotations, and

inversion.
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Three ways to make models “symmetry-aware” for 3D data
e.g. How to make a model that “understands” the symmetry of atomic structures?

mao@Dmaoamaoamaoazmaoam

Approach 1:
Data Augmentation

Throw data at the problem and
see what you get!
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38026
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Approach 2:
Invariant Inputs

Convert your data to invariant
representations so the neural
network can’t possibly mess it

up.

.97837
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.03829
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.36233
.85413
.13809
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.48673
.66307
.88737
.37906

.33136
.70334
.05450 ]
129630 Coordinates are most
22322 general, but sensitive to
"33310 translations, rotations, and
.36774 inversion.
.98192
.74025
.66708
.39070
Approach 3:

Invariant models
Equivariant models

If there’s no model that naturally
handles coordinates,
we will make one.

12



Three ways to make models “symmetry-aware” for 3D data
e.g. How to make a model that “understands” the symmetry of atomic structures?

mao@Dmaoamaoamaoazmaoam

Throw data at the problem and
see what you get!
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Convert your data to invariant
representations so the neural
network can’t possibly mess it

up.

.97837
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Coordinates are most
general, but sensitive to
translations, rotations, and
inversion.

Approach 3:
variantmodels

Equivariant models

If there’s no model that naturally
handles coordinates,
we will make one.
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Invariance vs. Equivariance (covariance) e.g. in 3D space

Does NOT change » Invariant .
Changes deterministically » Equivariant

Properties of a vector
under E(3)

Translation

Rotation m
Inversion |
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For 3D data, data augmentation is expensive, ~500 fold augmentation
and you still don’t get the guarantee of equivariance (it’s only emulated).
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For a function to be equivariant means that we can act on our inputs with g

OR act our outputs with g and we get the same answer
For a function with invariant input

in

Layer

means g is the identity (no change).

out

in

Layer

out
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Why limit yourself to equivariant functions?
You can substantially shrink the space of functions you need to optimize over.

All learnable functions

All learnable All learnable

equivariant functions

functions constrained
by your data.

Functions you
actually wanted
to learn.



Why not limit yourself to invariant functions?
You have to guarantee that your input features already
contain any necessary equivariant interactions

All learnable
equivariant
functions

All invariant
functions
constrained by
our data.

Functions you actually
wanted to learn.

OR

All learnable
invariant
functions.
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How Euclidean Neural Networks achieve equivariance to Euclidean symmetry
(high level)

Euclidean Neural Networks encompass
Tensor Field Networks (arXiv:1802.08219
Clebsch-Gordon Nets (arXiv:1806.09231
3D Steerable CNNs (arXiv:1807.02547
Cormorant (arXiv:1906.04015
SE(3)-Transformers (arXiv:2006.10503

e3nn (github.com/e3nn/e3nn
(Technically, e3nn is the only one that implements inversion)

e i i g

Some relevant folks... Mario Geiger, Ben Miller,
Risi Kondor, Taco Cohen, Maurice Weiler, Daniel
E. Worrall, Fabian B. Fuchs, Max Welling,
Nathaniel Thomas, Shubhendu Trivedi,...



Euclidean Neural Networks are similar to convolutional neural networks...



Euclidean Neural Networks are similar to convolutional neural networks...

Equivariant convolutional filters are based on
learned radial functions and spherical harmonics...

W(r) = R(r)Y,™ (7)

Neighbor
atoms

L=0
Convolution v
center °
L=1
@ Q3 oo
12 @ 9 -:— X e
i <’ | ] V w
L‘3“ ” s ~; ‘\ * ‘.‘
m=-3 m=-2 m=-1 m=0 m=1 m=2 m=3



Euclidean Neural Networks are similar to convolutional neural networks...

Equivariant convolutional filters are based on
learned radial functions and spherical harmonics...

W(r) = R(r)Y,™ (7)

Spherical harmonics of the same L transform
together under rotation g.

Neighbor
atoms .
+ + |
a, @ +a, g +a,0@
L=0 @
Convolution ®
center ° .
Lot .o — + +b OO
® ¢ b, ® b, - b,
, - W
L-2 @® - % - w -9 Spherical harmonics transform in the same manner
. as the irreducible representations of SO(3).
L3 B® ¢ [ | .';: -‘{» = e
m=-3 m=-2 m=-1 m=0 m=1 m=2 m=3



Euclidean Neural Networks are similar to convolutional neural networks...

Equivariant convolutional filters are based on
learned radial functions and spherical harmonics...

W(r) = R(r)Y,™ (7)

Neighbor
atoms

L=0
Convolution v
center °
L=1
@ Q3 oo
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Euclidean Neural Networks are similar to convolutional neural networks...

Equivariant convolutional filters are based on ...and geometric tensor algebra allow us to
learned radial functions and spherical harmonics... generalize scalar operations to more complex

W(r) = R(r)Y,™ (7)

Neighbor ” ®

atoms
e.g. How to multiply two vectors?

Convolution L=0 @ .
center —
-1 @ O o@ a - b — (C  scalar
L 4
o an & L W o — 7 —
et @ 9% a X b — (C  vector
o ad <’ ] V w
L=3 @ S % “" ," g -t =
_)
m=-3 m=-2 m=-1 m=0 m=1 m=2 m=3 a ® b p— 3x3

matrix



Euclidean Neural Networks are similar to convolutional neural networks...

Equivariant convolutional filters are based on ...and geometric tensor algebra allow us to
learned radial functions and spherical harmonics... generalize scalar operations to more complex

geometric tensors.
%74 77 = R (& Ylm r

Neighbor
atoms

34. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS,
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The input to our network is geometry and features on that geometry.

geometry = [[x0, yO, z0],[x1, y1, zl1l]]

C) features = |
[mMO, vOy, vO0z, vOx, aOy, a0z, aOx]
[ml, vliy, vlz, vlix, aly, alz, alx]

26



We categorize our features by how they transform under rotation and parity

geometry = [[x0, yO, z0],[x1, y1, zl1l]]

C) features = |
[mMO, vOy, vO0z, vOx, aOy, a0z, aOx]
[ml, vliy, vlz, vlix, aly, alz, alx]

]

Rs = [(1/ 0/ 1)/ (11 1/ _1)1 (1/ 1/ _1)]
# OR

Rs = [(1, 0, 1), ]

“"Representation List”

Notation _ _ 2 Vectors (L=1)
Rs = [(copies, L, parity),...] (odd parity)
1 Scalar (L=0)
(even parity)

27



What does equivariance get you?



Given a molecule and a rotated copy,

predicted forces are the same up to rotation.
(Predicted forces are equivariant to rotation.)

Additionally, networks generalize to molecules with similar motifs.

29



Primitive unit cells, conventional unit cells, and supercells of the same crystal

produce the same output (assuming periodic boundary conditions).

30



E(3)NNs can express tensors of atomic orbitals and predict molecular
Hamiltonians in any orientation from seeing a single example.

RH@T

o H

1s 2s 2s 2p 2p 3d 1s2s 2p 1s2s 2p
|

RV g

0.1

0.05
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E(3)NNs can manipulate geometry,
which means they can be used for generative models such as autoencoders.

We can convert local geomefiry into features and vice versa
via spherical harmonic projections.

geometry features




E(3)NNs are extremely data efficient.



E(3)NNs are extremely data efficient.

E(3)NNs for molecular dynamics (coming soon)
Water

System TFMD, 133 data points DeepMD, 133,500 data points
Liquid Water 29.7 (meV/A) 40.4 (meV/A)
Ice Ih (b) 26.7 43.3
Ice Th (c) 16.1 26.8
Ice Ih (d) 13.3 25.4

Data from: Zhang, L. et al. E. (2018). PRL, 120(14), 143001.

Simon
Batzner

.~ | -Boris
| Kozinsky



E(3)NNs are extremely data efficient.

E(3)NNs for molecular dynamics (coming soon)

Water
System TFMD, 133 data points DeepMD, 133,500 data points
Liquid Water 29.7 (meV/A) 40.4 (meV/A)
Ice Ih (b) 26.7 43.3
Ice Th (c) 16.1 26.8
Ice Ih (d) 13.3 25.4

Data from: Zhang, L. et al. E. (2018). PRL, 120(14), 143001.

E(3)NNs for phonon density of states (arxiv:2009.05163)
Training set of 1,200 crystal structures with 64 atom types.
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https://arxiv.org/abs/2009.05163

Features that are consequences of fully treating Euclidean symmetry...



Feature 1: All data (input, intermediates, output) in E(3)NNs are geometric tensors.
Geometric tensors are the “data types” of 3D space and have many forms.

Rs vector = [(1, 1, -1)]

Rs pseudovector = [(1, 1, 1)]

Rs doubleray = [(1, 2, 1)]

Rs spiral = [(1, 2, -1)]




Feature 1: All data (input, intermediates, output) in E(3)NNs are geometric tensors.
Geometric tensors are the “data types” of 3D space and have many forms.

Spherical harmonics

Ym L=0 @ Rs s orbital
[
L=1 -, - Rs p orbital
-
L=2 & : A A Rs_d orbital
-
<@ - . Rs f orbital
L=-3 PP , -J -— ——

n @

m=-3 m=-2 m=-1 m




Feature 2: The outputs have equal or higher symmetry than the inputs.

Curie’s principle (1894): “When effects show certain asymmetry, this asymmetry must be found
in the causes that gave rise to them.”

random random random
model 1 model 2 model 3

input

Tetrahedron

Octahedron
T. E. Smidt, M. Geiger, B. K. Miller. https://arxiv.org/abs/2007.02005 (2020)

39


https://arxiv.org/abs/2007.02005

or higher symmetry than the inputs.

s show certain asymmetry, this asymmetry must be found
s that gave rise to them.”

random random

model 2 model 3

Feature 2: The outputs have equal

Tetrahedron

Octahedron
T. E. Smidt, M. Geiger, B. K. Miller. https://arxiv.org/abs/2007.02005 (2020)
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Feature 2: The outputs have equal or higher symmetry than the inputs.
Symmetry compiler -- can’t fit a model that does symmetrically make sense

Task 1: Rectangle to Square Task 2: Square to Rectangle

41
T. E. Smidt, M. Geiger, B. K. Miller. https://arxiv.org/abs/2007.02005 (2020)



https://arxiv.org/abs/2007.02005

Feature 2: The outputs have equal or higher symmetry than the inputs.
Symmetry compiler -- can’t fit a model that does symmetrically make sense

X

S e -
7 N 2\
\ S

T. E. Smidt, M. Geiger, B. K. Miller. https://arxiv.org/abs/2007.02005 (2020)
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Feature 2: The outputs have equal or higher symmetry than the inputs.
Symmetry compiler -- can’t fit a model that does symmetrically make sense

| ® ® X
N 7N

predicts
degenerate
outcomes!

| o @
T. E. Smidt, M. Geiger, B. K. Miller. https://arxiv.org/abs/2007.02005 (2020)



https://arxiv.org/abs/2007.02005

Feature 2: The outputs have equal or higher symmetry than the inputs.
Symmetry compiler -- can’t fit a model that does symmetrically make sense

X

N

& ®
T. E. Smidt, M. Geiger, B. K. Miller. https://arxiv.org/abs/2007.02005 (2020)

Network
predicts
degenerate
outcomes!

44
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Feature 3: We can find data that is implied by symmetry.
Using gradients of loss wrt input we can find symmetry breaking “order parameters”

y 4 - |

Use gradients to “find” what’s missing.

— Learns anisotropic inputs. — Model can fit.

ot @) ] (3

L=0 L=0+2+4

oot N N \

X

X

----------------- Irreps with
even parity
L22 break
degeneracy
between x and

T. E. Smidt, M. Geiger, B. K. Miller. https://arxiv.org/abs/2007.02005 (2020)
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Feature 3: We can find data that is implied by symmetry.
Using gradients of loss wrt input we can find symmetry breaking “order parameters”

Octahedral tilting in perovskites (M** @ R**)
Network learns equal magnitude pseudovector order parameters on B site with proper spatial patterning.

000
ABXj; Pm3m (221)

Pm3m (221)  Imma (74) Pnma (62)

46
T. E. Smidt, M. Geiger, B. K. Miller. https://arxiv.org/abs/2007.02005 (2020)
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e3nn: a modular PyTorch framework for Euclidean neural networks
https://github.com/e3nn/e3nn

Utilities and classes for
e building E(3) equivariant neural networks
e manipulating geometric tensors
e visualizing spherical harmonics

developers of e3nn

% ¥ aow.
KosHuntyn w2l

’:r %m : MJQ S
’ Mario Geiger Ben Miller Kostiantyn Tess Smidt
(EPFL) (U of Amsterdam, Lapchevskyi (LBNL)

formerly FU Berlin) a7


https://github.com/e3nn/e3nn

e3nn: a modular PyTorch framework for Euclidean neural networks
https://github.com/e3nn/e3nn

Creating a basic convolution E(3) neural network

import torch

from e3nn import rs

from e3nn.networks import GatedConvParityNetwork
torch.set default dtype(torch.float64)

N atom types = 3 # For example H, C, O
Rs in = [(N_atom types, 0, 1)] # Input are scalars
Rs out = [(1, 1, -1)] # Predict vectors

model kwargs = {
'Rs_in': , 'Rs_out': Rs out, 'mul': 4, 'lmax': 2,
'layers': 3, 'max radius': r max, 'number of basis': 10,

}

model = GatedConvParityNetwork (**model kwargs)



https://github.com/e3nn/e3nn

e3nn: a modular PyTorch framework for Euclidean neural networks
https://github.com/e3nn/e3nn

Convert between Cartesian tensors (with symmetric indices) and Irrep tensors and
calculate degrees of freedom (e.g. elasticity tensor)

import torch

from e3nn import rs

from e3nn.tensor import CartesianTensor
torch.set default dtype(torch.float64)

rank4d = torch.zeros(3, 3, 3, 3) # Placeholder

Rs, Q = CartesianTensor(rank4, 'ijkl=jikl=kli]j').to irrep transformation()
print (“Representations: ”, Rs)

print (“Degrees of freedom: ”, rs.dim(Rs))

>> Representations: [(2, O, 1), (2, 2, 1), (1, 4,
>> Degrees of freedom: 21



https://github.com/e3nn/e3nn

e3nn: a modular PyTorch framework for Euclidean neural networks

https://github.com/e3nn/e3nn
Plot 3x3 matrix as linear combination of spherical harmonics.

# Symmetric Matrix
M = torch.randn (3, 3)
M

= M + M.transpose (0, 1)

# Plot matrix
px.imshow (M)

matrix = CartesianTensor (M, formula='ij=ji') .to irrep tensor()
r, £ = .from irrep tensor (matrix) .plot()

# Plot SH signal
surface plot = lambda r, f: go.Surface(

x=r[..., 0], y=x[..., 1], z=r[..., 2],
surfacecolor=f, showscale=False)
go.Figure ([surface plot(r, £f)])



https://github.com/e3nn/e3nn

collaborators of e3nn "‘
\ 4

MERCK

National

Laborato

Thromas Josh Simon Boris
Hardin Rackers Batzner

Claire Zhantao Nina
West Chen Andrejevic




A Quick Recap!

3D Euclidean symmetry:
rotations, translation, inversion
Different coordinate systems
= same physical system

Euclidean Neural Networks are equivariant to E(3)
Convolutional filters
= learned radial functions
and spherical harmonics

Geometric tensor algebra
Equivariant nonlinearities (did not discuss)

Equivariance can have unintended features.
1) Symmetry specific data types
2) Output symmetry equal to inputs
e Implement group equivariance and
get all subgroups for FREE!
e Symmetry compilers
3) Grad loss wrt input can break symmetry

Feel free to reach out if Tess Smidt
you have any questions!  tsmidt@lbl.gov
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A Quick Recap! Resources on Euclidean neural networks:

e3nn.org
3D Euclidean symmetry:
rotations, translation, inversion e3nn Code (PyTorch):
Different coordinate systems http://github.com/e3nn/e3nn
= same physical system “quick” tutorial:

https://tinyurl.com/e3nn-quick-tutorial-202011
Euclidean Neural Networks are equivariant to E(3) e3nn_ tutorial:

Convolutional filters http://blondegeek.qithub.io/e3nn_tutorial/
= learned radial functions Papers:

and spherical harmonics Tensor Field Networks (arXiv:1802.08219)
Geometric tensor algebra Clebsch-Gordon Nets (arXiv:1806.09231)
Equivariant nonlinearities (did not discuss) 3D Steerable CNNs (arXiv:1807.02547)
Cormorant (arXiv:1906.04015)
Equivariance can have unintended features. SE(3)-Transformers (arXiv:2006.10503)
1) Symmetry specific data types tfnns on proteins (arXiv:2006.09275)
2) Output symmetry equal to inputs e3nn on QM9 (arXiv:2008.08461)
e Implement group equivariance and e3nn for symm breaking (arXiv:2008.08461)
get all subgroups for FREE! E(3) and equivariance in ML (chemrxiv.12935198.v1)
e Symmetry compilers e3nn for phonon DOS (arxiv:2009.05163)

3) Grad loss wrt input can break symmetry

My past talks (look for video / slide links):

Feel f h out if ;
eel free to reach out It~ Tess Smidt https://blondegeek.github.io/talks 53

you have any questions!  tsmidt@lbl.gov



https://e3nn.org/
https://blondegeek.github.io/e3nn_tutorial/
https://arxiv.org/abs/1802.08219
https://arxiv.org/abs/1806.09231
https://arxiv.org/abs/1807.02547
https://arxiv.org/abs/1906.04015
https://arxiv.org/abs/2006.10503
https://arxiv.org/abs/2006.09275
https://arxiv.org/abs/2008.08461
https://arxiv.org/abs/2008.08461
https://doi.org/10.26434/chemrxiv.12935198.v1
https://arxiv.org/abs/2009.05163
https://blondegeek.github.io/talks

Calling in backup (slides)!
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Applications so far...

Finding order parameters of 2nd order structural phase transitions
Molecular dynamics (Harvard)

Molecule and crystal property prediction (FU Berlin)

Inverting invariant representations of atomic geometries (Sandia)
Autoencoding Geometry

Predicting molecular Hamiltonians (TU Berlin)

Long range interactions (FU Berlin, TU Berlin)

Electron density prediction for large molecules (Sandia)
Predicting chemical shifts for NMR (Merck, MIT)

Conditional protein design (UW)

Inverse design of optical properties of nanoparticle assemblies (LBL and UW)
Phonon properties of crystal structures (MIT)

Anharmonic elastic properties of crystal structures (UTEP)
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Spherical harmonics of a given L transform together under rotation.

Let g be an D is the Wigner-D matrix.
element of — — — — = lthas shape IFZ + 1,20 + 1]

I and is a function of g.

v

SO(3)

-
., ® T8, @ T

b, @ +b, & +b, &
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Predict ab initio forces for molecular dynamics
Preliminary results originally presented at

APS March Meeting 2019.

Paper in progress.

Testing on liquid water, Euclidean neural networks (Tensor-Field
Molecular Dynamics) require less data to train than traditional
networks to get state of the art results.

MAE [meV/A] RMSE [meV/A]
TFMD, 100 27.9 38.20
TFMD, 1000 11.29 14.82
Deep-MD, 133,500 not reported 40.0

Simon
Batzner

/,"3 Qp\”
Y’ r ? 4
O- b
L | 'Q‘p ’v A
/ ‘, ’.
n”, T A
D 0 Q a
® 4
0 s N “

Data set from: [1]
Zhang, L. et al. E. (2018).
PRL, 120(14), 143001.
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Euclidean neural networks can manipulate geometry,
which means they can be used for generative models such as autoencoders.



Euclidean neural networks can manipulate geometry,
which means they can be used for generative models such as autoencoders.

To encode/decode, we have to be able to
convert geometftry into features and vice versa.
We do this via spherical harmonic projections.

geometry features

®
0.4 o




Equivariant neural networks can learn to invert invariant representations.

Invariant features + Network can predict Which can be used
coordinate frame spherical harmonic to recover geometry.
projection...
@
0.4 0.4 ®
0.2
; O ENN Peak finding )
-0.2 /0.2
04 =0.5 -0.5 oA
0 |
o 7 Y 0 y 5 0
ox o o ,o"‘ 0.5 o oF o ¥ e 0.5 o 0;? S e N 0.5
« 77 /
Sandia
Thomas Josh National
Hardin Rackers Laboratories




We can also build an autoencoder for geometry: e.g. Autoencoder on 3D Tetris

Centers deleted
@ O ® ®
s @ [ ®
. ‘ i o 0
Q- | . S ye i . 2 ) B .
Pooling Pooling Unpooling Unpooling

Centers deleted



We can also build an autoencoder for geometry: e.g. Autoencoder on 3D Tetris

@ @
@ @ @
@
0 Q 0 Q 0 5
Pooling Unpooling Unpooling




Euclidean Neural Networks are similar to convolutional neural networks...

We use points. Images of atomic systems are sparse and imprecise.

VS.
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We use points. Images of atomic systems are sparse and imprecise.
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We use continuous convolutions
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centers.

Other
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Euclidean Neural Networks are similar to convolutional neural networks...

We use points. Images of atomic systems are sparse and imprecise.

We use continuous convolutions
with atoms as convolution
centers.

Other
atoms

Convolution
center
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Translation equivariance
Convolutional neural

network v/

Rotation equivariance

Dataaugmentation

Radiakfonet : ant
Want a network that both

preserves geometry and

exploits symmetry.

66



Invariant featurizations can be very expressive if well-crafted
Many invariant featurizations use equivariant operations
e.g. a (simplified) SOAP kernel for ethane molecule C_H, \

(1) Project neighbors of given atom (1)

onto spherical harmonics = Q->
(equivariant quantity). f
(2) Interact signals from different

atoms via tensor dot product ,
(equivariant operation) to produce
scalars (invariant quantity).
. @
(3) Give scalars to model.
(2)

(3) .o

il |

(Favored for kernel methods) 0.75

rrrrrrrr
L I | | I O |
O A WON -0




For a function to be equivariant means that we can act on our inputs with g

OR act our outputs with g and we get the same answer

For a function to be invariant means g is the identity (no change).

in

Layer

out

in

Layer

out
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Why limit yourself to equivariant functions?
You can substantially shrink the space of functions you need to optimize over.

All learnable functions

All learnable All learnable

equivariant functions

functions constrained
by your data.

Functions you
actually wanted
to learn.



Why not limit yourself to invariant functions?
You have to guarantee that your input features already
contain any necessary equivariant interactions

All learnable
equivariant
functions

All invariant
functions
constrained by
our data.

Functions you actually
wanted to learn.

OR

All learnable
invariant
functions.
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Neural networks are specially designed for different data types.
Assumptions about the data type are built into how the network operates.

Arrays » Dense NN 2D images Text » Recurrent NN Graph » Graph (Conv.) NN
= Convolutional NN
Components are The same features can be Sequential data. Next Topological data. Nodes
independent. found anywhere in an image. input/output depends on have features and network
Locality. input/output that has come passes messages between
before. nodes connected via edges.

space. Freedom to choose
coordinate system.

K 3D physical data \
2 Euclidean NN
Data in 3D Euclidean

\ J 71




Neural networks are specially designed for different data types.
Assumptions about the data type are built into how the network operates.
Symmetries emerge from these assumptions.

Arrays » Dense NN 2D images Text » Recurrent NN Graph » Graph (Conv.) NN
= Convolutional NN

No symmetry! [ (forward) time-translation symm. }

| A 4 A 4

—

[ 2D-translation symmetry 1

[ permutation symmetry }

| | -,
Components are The same features can be Sequential data. Next Topological data. Nodes
independent. found anywhere in an image. input/output depends on have features and network
Locality. input/output that has come passes messages between
before. nodes connected via edges.
3D physical data \
= Euclidean NN
3D Euclidean symmetry E(3): ﬁ'
3D rotations translations and '{:}‘
inversion

72
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Neural networks can’t mess up invariant representations.

You can use ANY neural network with an invariant representation.

Invariant representations can be used for other machine learning algorithms
(e.g. kernel methods).

If you can craft a good representation -- great!
But deep learning’s specialty is feature learning.
So, maybe use a different machine learning approach (e.g. kernel methods).

v -




the laws of physics have Euclidean symmetry,
even if systems do not.

The network is our model of “physics”. The input to the network is our system.

ﬁ( 7?775 = ZQZ 'UzXB qij ;J

B® @ @
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A Euclidean symmetry preserving network produces
the subset of symmetries induced by the input.

@ A

O(3) SO(2) + o,
mirrors
(C..) AN
Y

that preserve

Pm-3m
(221)
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Properties of a system must be compatible with symmetry.

Which of these situations (

<

¢

<

<

¢

<

/

) are symmetrically allowed / forbidden?
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Properties of a system must be compatible with symmetry.

Which of these situations (

<
<

<

) are symmetrically allowed / forbidden?

® v
® X
® X
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Properties of a system must be compatible with symmetry.
Which of these situations (inputs / outputs) are symmetrically allowed / forbidden?

a©—><—© V4
o o X @«

e 9
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Properties of a system must be compatible with symmetry.
Which of these situations (inputs / outputs) are symmetrically allowed / forbidden?

@ @ 7
@ <@ X @
1

e 9
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Equivariance can have unintuitive consequences.
Partition graph with permutation equivariant function into two sets using ordered labels.

Predict node labels
[0, 1] vs. [1, 0]
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Equivariance can have unintuitive consequences.
Partition graph with permutation equivariant function into two sets using ordered labels.
You can’t due to degeneracy.

Predict node labels
[0, 1] vs. [1, 0]

[1, 0] [0, 1]
[1, 0]

There’s nothing to distinguish one
partition to be “first” vs. “second”.
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Convolutions: Local vs. Global Symmetry
Convolutions capture local symmetry. Interaction of features in later layers yields global symmetry.
e.g. Coordination environments in crystals

Atomic systems form geometric motifs that can
appear at multiple locations and orientations.

Rb Mn Cl3
Space group: o 0 o
Symmetry of unit cell

(Global symmetry) o o°

|

Octahedral

coordination
(Local symmetry)




Symmetry emerges when different ways of representing something “mean” the same thing.
Representation can have symmetry, operations can preserve symmetry, and objects can have symmetry.

Translation symmetry in 2D:

Features “mean” the same thing in any location.

SO\
=
\‘I

>
NS
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Symmetry emerges when different ways of representing something “mean” the same thing.
Representation can have symmetry, operations can preserve symmetry, and objects can have symmetry.

Translation symmetry in 2D:

Features “mean” the same thing in any location.

Symmetry of 2D objects
Boundaries “break” global translation symmetry.

s

Periodic boundary conditions preserve
discrete translation symmetry.
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Symmetry emerges when different ways of representing something “mean” the same thing.
Representation can have symmetry, operations can preserve symmetry, and objects can have symmetry.

Permutation symmetry, S, :
Symmetry of sets
The freedom to list things in any order
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Symmetry emerges when different ways of representing something “mean” the same thing.
Representation can have symmetry, operations can preserve symmetry, and objects can have symmetry.

Permutation symmetry, S, :
Symmetry of sets Symmetry of elements of a graph

The freedom to list things in any order Graph automorphism, specific nodes are
indistinguishable (same global connectivity)

86



A bit of group theory!
Formally, what are invariant vs. equivariant functions

vector in vector space function (neural network)... ...which is equivalent to writing.
x € X ineus fle,w)y=y  f: X, W =Y
y E Y outputs
w E M/ weights
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Formally, what are invariant vs. equivariant functions
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A bit of group theory!
Formally, what are invariant vs. equivariant functions

vector in vector space function (neural network)... ...which is equivalent to writing.
x € X ineus fle,w)y=y  f: X, W =Y
y E Y outputs representation of g acting on vector space

w € Wrsts D (g) D.(g): X = X
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Do(g) =Tl
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A bit of group theory!
Formally, what are invariant vs. equivariant functions

vector in vector space function (neural network)... ...which is equivalent to writing.
x € X ineus fle,w)y=y  f: X, W =Y
y E Y outputs representation of g acting on vector space

w € Wrsts D (g) D.(g): X = X
TEG D,(g) D,(g):V =Y
Do(g) =Tl

equivariant to x if / W weights must be “scalars”

f(Dac(g) L, Dw(g)w) — f(Dm(g)wi)
(special case) invariant to x if — Dyf(wa w): Dy (g)y
D.(g)=D,(g) =1



M. Zaheer et al, Deep Sets, NeurlPS 2017

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, i.e., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (Zm ex ¢(x)), for suitable transformations ¢ and p.

The extension to case when X is uncountable, like X = R, we could only prove that f(X) =

p (er x qb(x)) holds for sets of fixed size. The proofs and difficulties in handling the uncountable
case, are discussed in Appendix A. However, we still conjecture that exact equality holds in general.

Next, we analyze the equivariant case when X = )) = R and f is restricted to be a neural network

layer. The standard neural network layer is represented as fo (x) = o(©x) where © € RM*M g the
weight vector and o : R — R is a nonlinearity such as sigmoid function. The following lemma states
the necessary and sufficient conditions for permutation-equivariance in this type of function.

Lemma 3 The function fg : RM — RM defined above is permutation equivariant iff all the off-
diagonal elements of © are tied together and all the diagonal elements are equal as well. That is,

O =AM+ (117) AMyeR 1=[1,...,1]T eRM I € RM*Mis the identity matrix

This result can be easily extended to higher dimensions, i.e., ¥ = R¢ when ), v can be matrices.
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Convolutional neural networks can “cheat” by being sensitive to “boundaries”.
(e.g. Predict geodesics on projected maps with and without periodic boundary conditions)

,_O
I L N
O N
Boundaries break symmetry. Pixels cannot be distinguished due
User: Stebe to translation equivariance.

https://en.wikipedia.org/wiki/Gall-Peters_projection

v/

Nodes can be distinguished due
to differing topology by latitude
(e.g. poles)!



In the physical sciences...

What our our data types?

3D geometry and geometric tensors...

...which transform predictably under 3D rotation, translation, and inversion.

These data types assume Euclidean symmetry.
» Thus, we need neural networks that preserve Euclidean symmetry.
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Geometric tensors take many forms. They are a general data type beyond materials.

Scalars Atomic orbitals
e Energy E PY
e Mass e g ©o
e Isotropic * ° w
- o ‘z' /e
Vectors
ecters -x § § X
e Force —_
e Velocity &
. ®
e Acceleration Output of o
e Polarization Angular " 1 <:>
Fourier T
Pseudovectors Transforms .., ®-0s
e Angular momentum G,
e Magnetic fields
a(l;ﬁc awy a:cz . ' BICEPZB—:nodesignal
: R SRR RPN D
vatrices. [ensors... o= o 0y 0y | Vector fields on A
[ Joa) W TR T (W P T e
oment ot fnertia O 0 spheres s, T NS 1 2 Ml N
e Polarizability 2 2 2 (e.g. B-modes 5 ﬁlt?t’ﬁ’\};‘::{}bffll::;l..N-;%itt:iﬂtf
; i 9. BT MubE S 1 3 N LAk
e Interaction of multipoles fthe C : B ool 11337700 m:zs;,H/ﬁiggm,ff.:
e Elasticity tensor (rank 4) Microwana ol s
y Microwave TREn RN =L N
Background) L I e e T



Our unit test: Trained on 3D Tetris shapes in one orientation,
these network can perfectly identify these shapes in any orientation.

Chiral

TRAIN

TEST




Several groups converged on similar ideas around the same time.

Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds

(arXiv:1802.08219)

Tess Smidt*, Nathaniel Thomas*, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, Patrick Riley
Points, nonlinearity on norm of tensors

Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network
(arXiv:1806.09231)
Risi Kondor, Zhen Lin, Shubhendu Trivedi

Only use tensor product as nonlineatrity, no radial function

3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data
(arXiv:1807.02547)
Mario Geiger*, Maurice Weiler*, Max Welling, Wouter Boomsma, Taco Cohen

Efficient framework for voxels, gated nonlinearity

*denotes equal contribution
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Several groups converged on similar ideas around the same time.

Pull requests Issues Marketplace Explore

Tensor field networks: Rotation- and translati i O ©Watch-| 0 | | #Star | 2] [ ¥Fork | 26
(arXiv:1802.08219) ocode s 2 puleawes| Tensor field networks + 3D steerable CNNs
Tess Smldt*, Nathaniel ThomaS*, Steven Kearn¢ Settings = Euclidean neural networks (e3nn)
Points, nonlinearity on norm of tensors oo R Rironds —
Manage topics
CIebSCh'Gordan Nets: a Fu"y Fou rier Space © 793 commits iv 1 branch 0 packages © 2 releases 22 8 contributors & MIT
(arXIV. 1 806' 0923 1) Branch: point - | New pull request Create new file Upload files = Find file
RISI Kondor’ Zhen Llna ShUbhendu Trlvedl This branch is 20 commits ahead, 1 commit behind mariogeiger:point. i1 Pull request [ Compare
On/y USG tensor pI’OCIUCt aS nOI’I/Ineaf'Ity, n( (3 mariogeiger Merge pull request #4 from bkmi/point ... Latest commit 917dcb9 yesterday
me3nn Merge pull request #4 from bkmi/point yesterday
. - i examples refactor into e3nn 6 days ago
3D Steerable C N Ns : Learn I ng ROtatlona I Iy Eq i src/real_spherical_harmonics rsh: extended to handle float32 2 months ago
(arXIV' 1 80 7 0254 7) i tests GatedBlock(Op, Rs_out, ...) last month
. . . . . =) .gitignore change directories structure 6 months ago
Mario Geiger*, Maurice Weiler*, Max Welling, V\] s e o Lo S
Efficient framework for voxels, gated nonli 5 README.md refactor e3nn 10 days ago
E) setup.py rename e3nn last month
A . & README.md ‘
*denotes equal contribution = ’
E3NN

The group E(3) is the group of 3 dimensional rotations, translations and mirror. This library aims to create
E(3) equivariant convolutional neural networks.
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Spherical harmonics of a given L transform together under rotation.

D is the Wigner-D matrix.
Let g be a 3d
rotation matrix. . — — = — = lthas shape [(21 - 17 20 + 1]

I and is a function of g.

v

-
., ® T8, @ T

., @ +b, & +b,0@
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How to encode (Pooling layer). Recursively convert geometry to features.

Geomet
Yy

fpwood "N




How to decode (Unpooling layer). Recursively convert features to geometry.

Geomet
Yy

fpwood "N



We want to convert geometric information (3D coordinates of atomic positions)
into features on a trivial geometry (a single point)
and back again.

Reduce ]\ / Create
geometry to R geometry from
single point. single point.

—Pp @ —P

] Single point with continuous ]
Discrete geometry latent representation Discrete geometry

(N dimensional vector)
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We want to convert geometric information (3D coordinates of atomic positions)
into features on a trivial geometry (a single point)
and back again.

Reduce

Create
geometry to R N geometry from

\{ single point. single point. \/

Single point with continuous ]
latent representation Discrete geometry
(N dimensional vector)

Discrete geometry

@)

_ J/eN] e\l
Atomic structures are ‘
hierarchical and can be /OXN//OX ® X ONON
constructed from AN X LTINS

. : /@X|/® °
recurrinq geometric ¥ ( S NN A



We want to convert geometric information (3D coordinates of atomic positions)
into features on a trivial geometry (a single point)
and back again.

Reduce

Create
geometry to ]R N geometry from

\ ( single point. single point. \ (

Single point with continuous ]
latent representation Discrete geometry
(N dimensional vector)

Discrete geometry

Atomic structures are + Encode geomet + Decode aeomet
hierarchical and can be g ry g ry

constructed from + Encode hierarchy ~ + Decode hierarchy

recurring geometric o .
motifs. (Need to do this in a recursive manner)
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To autoencode, we have to be able to convert
geometry into features and vice versa.
We do this via spherical harmonic projections.

NN

Sowa € \\‘/’v-’?{\&dhﬁ\

S bm 5.
- plc- r
‘ g(' ° lw L

P S zm R

mn=-f J%°

Q; WY

Veckse LZQ’QM . j

S

{<0 O
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What a computational materials physicist does:

Given an atomic structure,

...use quantum theory and

supercomputers to determine...

Energy (eV)

6

4F

2
0
)
4
-6

-8}

[\

-10
-12

H |[¢) = E |)

...and what the electrons are doing.

L3

T
L]

I'ys X;

N

rls_
Iy

r A X UK X r

Momentum

Structure

Properties

107



We want to use deep learning to speed up calculations, hypothesize new structures,
perform inverse design, and organize these relations.

Zooooom!

Quantum Theory / Molecular dynamics

+ Supercomputers .
Structure #’ Properties

Inverse Design

-—

Hypothesize SR
Map
S

Primer?


#
#

We want to use deep learning to speed up calculations, hypothesize new structures,
perform inverse design, and organize these relations.

The problems

start here \

Structure



Given a single example of a degenerate solution,
it knows what other solutions are possible by symmetry.
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To be rotation-equivariant means that we can rotate our inputs
OR rotate our outputs and we get the same answer (for every operation).
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For L=1 = L=1, the filters will be a learned, radially-dependent linear
combinations of the L =0, 1, and 2 spherical harmonics.

Random filters for
L=1>L=1...

(3 in L=1 channels by
3 out L=1 channels)

... as a function of
increasing r.

Time showing filter for
varying r, where
Osrsr_ -

ax

Radial distance is
magnitude

as a function of
angle
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Ground Truth

o
[
P\
B 5
AL b, A Og
/0 03
Q o
Y Q’J’ 09 X

Prediction of
network trained 2
with symmetry 8
breaking input )
and given ob
symmetry ok
breaking input BN
along z. ,

o

=042
0.4

~04
02

Prediction of
network trained
with symmetry
breaking input
but given trivial

- Input
o, (single scalar).

X

Superposition of 6
rotationally
degenerate solutions.
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A brief primer on deep learning

deep learning C machine learning C artificial intelligence

115
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A brief primer on deep learning

model (“neural network”):
Function with learnable parameters.

model 116



A brief primer on deep learning

model (“neural network”): Ex: "Fully-connected™
Function with learnable parameters. network

y = tanh(Wx +b) | paameiors

Element-wise

Linear . nonlinear
transformation function

NL—

model "7



A brief primer on deep learning

model (“neural network”): Ex: "Fully-connected™
Function with learnable parameters. network

y = tanh(Watanh(Wyx +by) + b2) Learned

Parameters

NL

Neural networks with multiple layers
can learn more complicated functions.

model 118



A brief primer on deep learning

model (“neural network”):

Ex: "Fully-connected"
Function with learnable parameters.

network
Hidden
."/ \'-.
Yy = tanh ( W2 tanh(W1 xr + bl) —+ [l“'/',}/\
IN

NL

Neural networks with multiple layers
can learn more complicated functions.

model
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A brief primer on deep learning

deep learning:

Add more layers.

& -

NL

NL

deep learning

NL

NL

NL

NL
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A brief primer on deep learning

data:
Want lots of it. Model has many parameters. Don't want to easily overfit.

model data 121



A brief primer on deep learning

cost function:
A metric to assess how well the model is performing.

The cost function is evaluated on the output of the model.

Also called the loss or error.

cost function
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A brief primer on deep learning

way to update parameters:
Construct a model that is differentiable

Easiest to do with differentiable programming frameworks: e.q. Torch, TensorFlow, JAX, ...

Take derivatives of the cost function (loss or error) wrt to learnable parameters.

This is called backpropogation (aka the chain rule).

AWij

W

-7

0 error(f(W,x),y)

NL

oW

W

<

NL

- f=]

way to update parameters
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A brief primer on deep learning

convolutional neural networks:

Used for images. In each layer, scan over image with learned filters.

d

x1

1)1 |5

x0 x1

0

0

1

(=)

0

o OF,SOXO

= | OO |-

= [ |
=

OlR|R|M

O|lO|=|O

Image

Convolved
Feature

conv. nets
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A brief primer on deep learning Back

convolutional neural networks:
Used for images. In each layer, scan over image with learned filters.

conv. nets 125



