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We live in the era of cosmological data
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Cosmological data covers a hierarchy of scales on
the past light cone

Cosmic Galaxy
Microwave surveys
Background
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Cosmology

Initial conditions of the universe The observed universe



Cosmological inference: solving the non-linear
inverse problem

AS' ng, 1, fnl

Initial conditions The observed universe



The goals of cosmological inference

Initial conditions

—
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Now have a deep tool set to solve cosmological inference

Full, detailed, likelihood-based
forward model

. BORG
—

Initial condition reconstruction
Non-Gaussian, field-based AP

Global generalization of
Alcock Paczynski test A new multi-tracer Global AP test!

(0)€,52(8) Z"(0)ExnD(0)
(0) = (DT<0> AC) DT<e>sm-mD<e>)

A new Global AP-test in D,-space
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Phy5|cal Insnght

'New, robust cosmologlcal tests:

IVIuItl probe cross—correlatlon AP

Simulation image from lilustris-TNG

Machine learning innovations &
Neural Physical Engines

Fleld based AIcock-Paczynskl (AP) on Neural Density Estimation

*lrght cor}é‘ : \ Information Maximizing Neural Networks

Simulation-based inference/
Likelihood-free inference

simulated
parameters data

Freedom to model .\
( §

simulation

Tools:
pyDELFI
Moment Networks

Simulation innovations
Perfectly parallel n-body sims
Super-resolution of n-body sims
Variance reduction (CARPool)

Wasserstein Generative Adversarial Networks Quijote and CAMELS projects



Let’s start with the initial conditions



Initial condition reconstruction using a fully generative
probabilistic forward model of galaxy surveys

BORG: Bayesian Origin Reconstruction from Galaxies

e Gaussian prior + Gravity + likelihood for galaxies

(includes particle-mesh or LPT gravity solver, survey model, bias model,
automatic noise level calibration, selection function, mask, ...)

* Hamiltonian Markov Chain with >107 parameters

Initial conditions, and inferred

—_— BORG 3 Z=10((1)Iark matter densities

s © © © © o ©

Observations \‘1’/ \\L/
(galaxy catalog + meta-data: selection S S — r—
functions, completeness...) 2R - Summaries L&t

Jasche & Wandelt 2013, arXiv:1203.3639 s W'tt.?. 4
Jasche, Leclercq & Wandelt 2015, arXiv:1409.6308 | Quan I. Ie. 2
Lavaux & Jasche 2017... uncertainties
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Bayesian reconstruction of
cosmological initial conditions with BORG
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See full bibliography and current status at http://aquila-consortium.org



Example Bayesian LCDM results:
dynamical velocities

270°

Use these to de-bias HO from standard sirens:

Lecl tal. 2017
eclercq eta Mukherjee et al arXiv:1909.08627



So is that it — are we done? Problem solved?

* These runs are for fixed fiducial cosmology.

* The full statistical power even of current data is so enormous that
even with a very detailed data model, the inference of cosmological
parameters is still dominated by systematics.

* Need:
— more reality in the data model; and

— better ability to project/cut/mask the data for cosmological inference to
become insensitive to remaining model error

Why is this so hard?



The challenges of learning from large scale structure

Limited information — only one universe! Need careful treatment
of “cosmic variance” uncertainties

Non-linearity — affects most of the modes in the late universe
Bias — we observe tracers, not the matter
Non-Gaussianity — signal, noise, foregrounds

Large data sets — observational rather than experimental and
often indirect

Systematics — astrophysical “contaminants,” instrumental and
observational effects



Machine learning to the rescue

Fully ab initio, physics-based models like BORG allow
the tightest possible confrontation of models and

data.

But is it really practical to write down a likelihood that
includes everything?

Principled used of Machine Learning (ML) can help in
connecting physical models to data.



Neural Physical Engines: Modeling bias with ML

* We designed a new type of neural network to learn (cosmological) physics

* The network encodes relevant approximate physical symmetries/constraints
— Translation invariance
— Local rotational invariance
— Locality

* A neural network with only 17 parameters!

* Use itinthe BORG framework as a bias layer to map DM density to halos
Charnock, Lavaux, Wandelt, Boruah, Jasche, Hudson (arXiv:1909.06379)

* This allows zero shot learning: needs no training data!

e A fully Bayesian neural network with data-driven MCMC inference of network parameters
and cosmological initial conditions



Neural physical engines for inferring the halo mass distribution function
Charnock, Lavaux, Wandelt, Boruah, Jasche, Hudson (arXiv:1909.06379)

DM reconstruction
(shown at z=0) and
Initial conditions
(not shown)

1013 1014
Halo mass

Simulated data:
halo distribution

Neural forward model of halo
distribution within BORG



Too much, too fast?
Let’s relax and focus on geometrical tests

Cosmographic/geometric tests probe aspects of the
data that are robust to model misspecification

This avoids having to model the full complexity of the
data.



Back to Cosmology 101

* Chapter 1: Homogeneous and isotropic universe
— 1.1 FLRW metric
— 1.2 RW equation

* Chapter 2: Classical cosmological tests
— 2.1 Luminosity-distance redshift test

“Observe an object’s luminosity distance and redshift and plot them
against each other”



spec.

Luminosity Redshift,
Distanc

*

Luminosity + Cosmological Parameters
distance -redshift relation




Cosmology 101

* Chapter 1: Homogeneous and isotropic universe
— 1.1 FLRW metric
— 1.2 RW equation

* Chapter 2: Classical cosmological tests
— 2.1 Luminosity-distance redshift test

“Observe an object’s luminosity distance and redshift and plot them
against each other”

But there are no objects in a homogeneous and isotropic universe!
Clearly need to consider structure.



A new way to think about cosmological tests

* Consider two types of tracers
— A luminosity distance tracer sn
— A redshift tracer g

e Let’s write down the simplest possible model for the fields they
trace:

— Gaussian random field

5, \ " 5
— 2£’full(5ga55n’0) — (5g> E—l (59) +ln’E‘



A new way to think about cosmological tests

0
—1 g —
<5> in]=]

Assume both cluster and are mapped from comoving
coordinates into luminosity distance and redshift space.
Then

5 T
— 2L"full(éga 5577,’9) — (59 )
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What are the Zand D?



The transformation matrix Z
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A new way to think about cosmological tests

5, \ " 5
- 2Lan(3,.8.00) = (57 ) =7 () +mim

Assume both cluster and are mapped from comoving
coordinates into luminosity distance and redshift space.
Then

Global generalization of
Alcock Paczynski test

Z"(0)€:.Z(0)

g-sn

A new multi-tracer Global AP test!
Z'(0)¢, ,D(0)

D70 D(0),

A new Global AP-test in D;-space
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Re-Discover the classic luminosity distance-redshift test as
a special case of this multi-probe AP test!

) — (21 0):sZ(8) 27 (6)&:nD(6)
D" (0)¢,.,Z(0) D' (0)&n-suD(0)

g-sn

[1]

* The multi-probe AP test involves summing over all pairs of
distance and redshift tracers.

* If we (incorrectly) ignore spatial clustering by forcing the
covariance to be diagonal, we get a single sum with those
objects that trace both D and z. This is the D-z test!

* But galaxies are clustered so we can use all pairs -> can get
better performance

* Can exploit this to solve major problems in SN and GW
cosmology for the next decade.



Next-decade
supernova cosmology

* Upcoming surveys will have
tens of thousands of
supernovae

* Far too many to follow all of
them up spectroscopically!

* Photometric information leads
to type contamination and
photo-z systematics.

S. Mukherjee & B. Wandelt, arXiv: 1808:06615.
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Luminosity + Cosmological Parameters
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Dark Sirens with multi-probe AP

* The technique applies to any distance tracer, including dark
gravitational wave sirens.

30

e 200 GW events without >
EM counterpart sufficeto
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Mukherjee, BDW, Nissanke & Silvestri arXiv:2007.02943



Can we use this geometrical approach to do
cosmological inference with BORG?

* Going to a geometric approach decouples the “bias” model
from cosmological parameters

* By only keeping the cosmological parameter dependence in
coordinate mapping we can use BORG to do a generalized,
non-Gaussian, field-based “Alcock-Paczynski” on the light cone

Alcock Paczynski test

=(6) — (z (0)¢,..Z(0) Z (e)gg_snp(e))

g-sn DT(9>€SII-SIID(0)



A field-based AP test (not just 2-point stats!)

Coordinate Transformation (Alcock & Paczyriski 1979)
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Kodi Ramanah et al., arXiv 1808.07496



Hi_gh precision inferences

* Probing deep redshift range; geometric distortion due Comparison to standard BAO constraints

to cosmic expansion is highly informative

—— BAO (SDSS - 111, DR12)
—— ALTAIR (AP)
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1.2 N
1.4
Marginal & jOint posteriors 20 0.2 0.3 0 0 0.45 i
1 = Imean ,4:\ 50 IMean f?'\ .98 1 i nean
— lrue Ll - e 1A !
100 /1 A i
Coal - i\ 0.99 1 i
: | |
i 30 )
E E 1.00) i
/B 10 : i
___./v,.f" i < E 1.02 .
. ). M) ||; ! B '|| 1,90 ' 1500 | ;H 0 ;]'- ||'?;"|\

Kodi Ramanah et al., arXiv 1808.07496



Focusing on geometry works:
Cosmology and bias parameters decouple!

Cosmology {

™ p(l) b(l) wo QIn

Everything else —=

N@ @ p(4> b NG B) pw) b® N@ 2 p<2) b NW ¢

Kodi Ramanah et al., arXiv 1808.07496



Relaxed?

Good! Let’s get back to solving the full problem!



Good! Let’s get back to solving the full problem!




The full problem

To succeed we need more freedom than a traditional likelihood approach
can provide:

* FREEDOM to make our physical model anything we want
 FREEDOM to project/summarize/cut/mask our data any way we want

Simulating data is much easier than deriving an accurate likelihood.

Can we analyse data if all we can do is simulate it?

Benjamin Wandelt




Simulations are draws from the likelihood

P(d|0)P(6)

POId) = =5

d* < simulation(d™|@)




Simulation based (likelihood-free)
inference for realistic
data models

with Justin Alsing, Tom Charnock, Stephen Feeney, Francisco Villaescusa, Guilhem
Lavaux




Likelihood-free inference 101

simulated

parameters data data

simulation

nthetimit ¢ — 0, {0} < P(0|d)

Benjamin Wandelt




Likelihood-free inference 101

How to reduce data-space?




Reducing data space: massive data compression

n parameters

M summary statistics
n compressed statistics

Score compression: Alsing & Wandelt arXiv:1712.00012; Heavens, Jimenez & Lahav 2000




Likelihood-free inference 101

=

How to reduce data-space?

How to explore parameter-space?




Machine Learning to the rescue!

Density estimation Likelihood free inference
(DELFI):

Directly learn probability density of parameters
and compressed data

Alsing, Feeney & Wandelt arXiv: 1801.01497




DELFI
Posterior
iInference
works...

and it’s
much
faster than

I Long-run MCMC sampling of exact posterior
Density estimation likelihood-free inference

Alsing, Wandelt, Feeney
arXiv:1801.01497
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Latest news in DELFI

* New nuisance-hardened compression greatly reduces required number of
simulations and allows many more parameters (Alsing & Wandelt
arXiv:1903.01473).

 New version of DELFI now released including neural density estimators to fit
the likelihood (Alsing, Charnock, Feeney, Wandelt arXiv:1903.00007)

* Alsoincludes active learning for deciding where to run simulations

e Can go to much higher number of parameters through a combination of direct
neural estimates of posterior moments and low-dimensional posterior
marginals (Jeffrey & Wandelt arXiv:2011.05991, presented at NeurlPS 2020)
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Moment networks: BBH mergers

0.4 1
0.3 A
0.2 1

0.1 1 J

| Iy
0.0 - ’|‘|| ‘,'lh 14 'lj' ,‘» ")“|"

|
o
=

|
o
N

I
o
W

|
_CD
o

0.00 0.02 0.04 0.06 0.08 010 0.12
t / seconds

BBH merger simulations, LIGO noise

h , strain

0.4 -
0.3 -
0.2 -
0.1-
0.04 |

-0.11

—-0.2 -

-0.3 1

—0.4 -

0.00 0.02 0.04 0.06 0.08 010 0.12
t / seconds




h , strain

Moment networks: BBH mergers
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SBI reconstruction of BBH merger simulations, LIGO noise

Jeffrey & Wandelt, arXiv:2011.05991
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Moment networks: CMB foregrounds
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Moment networks: CMB foregrounds
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But what if you don’t know how to
compute informative summaries of
your data?

Machine Learning to the rescue!



Automatic Physical Inference with Information
Maximizing Neural Networks (IMNN)

Charnock, Lavaux, Wandelt (arXiv:1802:03537)

Goal: remove the need to “guess” heuristic, informative summaries of the
data

Setup: design a neural network that maps the data into a small set of
maximally informative summaries.

Training uses physical simulations of the model to maximize the information
in the summaries about the parameters of the model.

The achieved loss on a test set is meaningful —it’s the information content of
the data.

Can prove that the IMNN computes the optimal (score) compression without
knowing the likelihood (Wandelt et al., in prep)



Example application: weak lensing tomography with
DELFI & IMNN

Mask and noise

10 spherical shells of correlated signal simulations Taylor, et al., arXiv: 1904.05364
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How do we get the all these
simulations we need for LFI/SBI?



Leclercq et al: Simbelmyné: Perfectly Parallel n-body sims.
Opens up new ways to do larger and deeper n-body sims on a broad
range of computational architectures

1 Gpe/h box

<1% error on P(k)
small scales

100% correlation > 1.00' H
. . . . —=== L. = 62.5 Mpc/h, Lyger = 13.7 Mpc/h
with serial simulation
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Leclercq et al: arXiv:2003,04928
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N. Chartiers et al: CARPool reduces the number of
needed simulations by orders of magnitude

~t+- 5 GADGET w/ CARPooO|

Convergence w101 H\\ 4500 GADGET

Acceleration by —

Regression and (9 _

Pooling) uses fast, § | o

approximate T / 20x95% confidence mtervals
surrogates to give = o
unbiased, low- ol / ax100g
variance estimates MIS 3.2:133%

of full simulation %Hﬁfﬁfw#%

results. 6 X 1005 g 50

N. Chartiers et al: arXiv:2009 0% 970



F. Villaescusa-Navarro et al.: The QUIJOTE simulations
to train machine learning surrogates

* Largest release of N-body simulation data to date

— 43,100 full GADGET 3 simulations (1 Gpc)3, 5123 or 10243 particles
— ~1 PB of data

* Goal: quantify statistics information content of non-Gaussian non-
linear density field about cosmological parameters

* Includes full dark matter snapshots, halo and void catalogues, and
many pre-computed statistics.

Excellent tool for training machine learning surrogates.

Villaescusa-Navarro et al, arXiv:1909,0£8273



Kodi Ramanah et al: neural super-resolution of n-
body simulations

Reference LR density field

Initial conditions

Uses a Wasserstein-
GAN to generate high-
resolution n-body
output from low-res
result and high-res
initial conditions with
~ 1% accuracy.

Emulated HR density field

Kodi Ramanah et al, arXiv:2001.05£19



Cosmology and Astrophysics with Machine Learning

Collaborative project to generate large suites of full, cosmological
hydrosimulations as a function of cosmological parameters and
astrophysics models with two different codes (AREPO/Illustris &
GIZMO/SIMBA).

Use to train and validate machine learning surrogates, and
likelihood-free, simulation-based inference.

F. Villaescusa-Navarro et al: arXiv:2010,.00&19



Summary

* Will be awash in data. Many advances in cosmology hinge on solving the
cosmological inference problem. Let’s solve it! We want:

The initial conditions of the universe to study the cosmic beginning

High-accuracy, high-precision inferences of expansion geometry and growth to lift the
mysteries of dark matter and cosmic acceleration.

* We now have a tool set to attack this problem based on advances in physics, stats,
and machine/deep learning

Full physical forward model inference such as BORG
Neural physical engine layer to model observations from dark matter

New, geometrical cosmological tests (field-based Alcock-Paczynski and multi-probe
generalizations) that are robust to model misspecification

Likelihood-free, simulation-based inference

* New approaches to solve the simulation problem, e.g
Perfectly parallel sims with Simbelmyné
Unbiased variance reduction with CARPool
High-performance neural surrogates



Codes

BORG and related projects: aquila-consortium.org

IMNN: bitbucket.org/tomcharnock/imnn/

DELFI: github.com/justinalsing/pydelfi

The Quijote Simulations: github.com/franciscovillaescusa/Quijote-simulations

The Camels Simulations: camel-simulations.org

Simbelmyné perfectly parallel n-body code: simbelmyne.florent-leclercg.eu

Benjamin Wandelt
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