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The big picture

The End of the Beginning

Recombination (CMB is emitted)

Dark ages (absorption only)

Structure lights up, reionization

Matter dominates

Creation of the elements
Radiation dominates

Dark energy dominates – acceleration

You, Today
Tracers of Cosmic Structure

Large scale structure surveys, 
Galaxies, Clusters

21-cm brightness mappingWeak lensingQuasars, Ly-α21-cm absorption
Cosmic Microwave BackgroundCMB Spectral distortions

Neutrino background

Primordial gravitational waves

Physical Timeline



PLANCK
SDSS I, II, III, IV, V

We live in the era of cosmological data

(Your favorite survey here)
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Cosmological data covers a hierarchy of scales on 
the past light cone

Cosmic
Microwave
Background

Galaxy
surveys



Initial conditions of the universe

Cosmology

Forward model

The observed universe

Ω!, Ω", 𝑚#, …
Ω$, w%, 𝑤&, …

𝐴', 𝑛', 𝑟, 𝑓(),… 



Initial conditions The observed universe

Ω!, Ω", 𝑚#, …
Ω$, w%, 𝑤&, …

𝐴', 𝑛', 𝑟, 𝑓(),… 

Inference

Cosmological inference: solving the non-linear 
inverse problem



The goals of cosmological inference

Cosmic Beginning

Cosmic Content

Cosmic Fate

Initial conditions

Growth of perturbations

Dynamics

Expansion geometry
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𝐻%, Ω$, 𝑤%, 𝑤&, …

𝐴', 𝑛', 𝑟, 𝑓(),… 

Ω!, Ω", 𝑚#, 𝜏,…



Machine learning innovations
Neural Physical Engines
Neural Density Estimation
Information Maximizing Neural Networks
Wasserstein Generative Adversarial Networks

Simulation image from Illustris-TNG

Now have a deep tool set to solve cosmological inference

Benjamin Wandelt

Physical Insight
New, robust cosmological tests: 
Field-based Alcock-Paczynski (AP) on 
light-cone
Multi-probe cross-correlation AP

Simulation-based inference/
Likelihood-free inference 

Freedom to model

Tools:
pyDELFI
Moment Networks

Simulation innovations
Perfectly parallel n-body sims
Super-resolution of n-body sims
Variance reduction (CARPool)
Quijote and CAMELS projects

BORG

Full, detailed, likelihood-based 
forward model 

Initial condition reconstruction
Non-Gaussian, field-based AP



Let’s start with the initial conditions
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• Gaussian prior + Gravity + likelihood for galaxies

• Hamiltonian Markov Chain with >107 parameters

Initial condition reconstruction using a fully generative 
probabilistic forward model of galaxy surveys

BORG:	Bayesian	Origin	Reconstruction	from	Galaxies

BORG

Observations

Initial conditions, and inferred 
dark matter densities

z=100                                z=0

(galaxy catalog + meta-data: selection 
functions, completeness…)

Jasche & Wandelt 2013, arXiv:1203.3639
Jasche, Leclercq & Wandelt 2015, arXiv:1409.6308
Lavaux & Jasche 2017…

(includes particle-mesh or LPT gravity solver, survey model, bias model, 
automatic noise level calibration, selection function, mask, …)

Summaries
with

quantified
uncertainties



Bayesian reconstruction of
cosmological initial conditions with BORG

from Jasche, Leclercq & Wandelt 2014, arXiv:1409.6308

See  full bibliography and current status at http://aquila-consortium.org

ObservationsFinal conditionsInitial conditions



Leclercq et al. 2017 Use these to de-bias H0 from standard sirens: 
Mukherjee et al arXiv:1909.08627 

Example Bayesian LCDM results: 
dynamical velocities



So is that it – are we done? Problem solved?

• These runs are for fixed fiducial cosmology.
• The full statistical power even of current data is so enormous that 

even with a very detailed data model, the inference of cosmological 
parameters is still dominated by systematics.

• Need:
– more reality in the data model; and
– better ability to project/cut/mask the data for cosmological inference to 

become insensitive to remaining model error

Why is this so hard?
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The challenges of learning from large scale structure

Limited information – only one universe! Need careful treatment 
of “cosmic variance” uncertainties

Non-linearity – affects most of the modes in the late universe
Bias – we observe tracers, not the matter

Non-Gaussianity – signal, noise, foregrounds
Large data sets – observational rather than experimental and 

often indirect
Systematics – astrophysical “contaminants,” instrumental and 

observational effects



Machine learning to the rescue

Fully ab initio, physics-based models like BORG allow 
the tightest possible confrontation of models and 
data. 

But is it really practical to write down a likelihood that 
includes everything?

Principled used of Machine Learning (ML) can help in 
connecting physical models to data.
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Neural Physical Engines: Modeling bias with ML
• We designed a new type of neural network to learn (cosmological) physics
• The network encodes relevant approximate physical symmetries/constraints

– Translation invariance
– Local rotational invariance
– Locality

• A neural network with only 17 parameters!

• Use  it in the BORG framework as a bias layer to map DM density to halos
Charnock, Lavaux, Wandelt, Boruah, Jasche, Hudson (arXiv:1909.06379)

• This allows zero shot learning: needs no training data!
• A fully Bayesian neural network with data-driven MCMC inference of network parameters 

and  cosmological initial conditions



Neural physical engines for inferring the halo mass distribution function
Charnock, Lavaux, Wandelt, Boruah, Jasche, Hudson (arXiv:1909.06379)

DM reconstruction 
(shown at z=0) and
Initial conditions 
(not shown)

Simulated data: 
halo distribution

Neural forward model of halo 
distribution within BORG



Too much, too fast? 
Let’s relax and focus on geometrical tests

Cosmographic/geometric tests probe aspects of the 
data that are robust to model misspecification

This avoids having to model the full complexity of the 
data.
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Back to Cosmology 101

• Chapter 1: Homogeneous and isotropic universe
– 1.1 FLRW metric
– 1.2 RW equation
– …

• Chapter 2: Classical cosmological tests
– 2.1 Luminosity-distance redshift test

“Observe an object’s luminosity distance and redshift and plot them 
against each other”
But there are no objects in a homogeneous and isotropic universe!
Clearly need to consider structure.

Benjamin Wandelt
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Luminosity  
Distance

 Luminosity  
distance -redshift relation

Cosmological Parameters

spec.  
Redshift



Cosmology 101

• Chapter 1: Homogeneous and isotropic universe
– 1.1 FLRW metric
– 1.2 RW equation
– …

• Chapter 2: Classical cosmological tests
– 2.1 Luminosity-distance redshift test

“Observe an object’s luminosity distance and redshift and plot them 
against each other”
But there are no objects in a homogeneous and isotropic universe!
Clearly need to consider structure.

Benjamin Wandelt



A new way to think about cosmological tests

• Consider two types of tracers
– A luminosity distance tracer sn
– A redshift tracer g

• Let’s write down the simplest possible model for the fields they 
trace:
– Gaussian random field

Benjamin Wandelt



A new way to think about cosmological tests

Assume both cluster and are mapped from comoving 
coordinates into luminosity distance and redshift space. 
Then

What are the Z and D?



The transformation matrix Z

Benjamin Wandelt

D is the analogous transformation to distance space.



A new way to think about cosmological tests

Assume both cluster and are mapped from comoving 
coordinates into luminosity distance and redshift space. 
Then

Global generalization of
Alcock Paczynski test

A new Global AP-test in DL-space

A new multi-tracer Global AP test!



Re-Discover the classic luminosity distance-redshift test as 
a special case of this multi-probe AP test!

• The multi-probe AP test involves summing over all pairs of 
distance and redshift tracers.

• If we (incorrectly) ignore spatial clustering by forcing the 
covariance to be diagonal, we get a single sum with those 
objects that trace both DL and z. This is the DL-z test! 

• But galaxies are clustered so we can use all pairs -> can get 
better performance

• Can exploit this to solve major problems in SN and GW 
cosmology for the next decade.



Next-decade 
supernova cosmology

• Upcoming surveys will have 
tens of thousands of 
supernovae

• Far too many to follow all of 
them up spectroscopically!

• Photometric information leads 
to type contamination and 
photo-z systematics.

S. Mukherjee & B. Wandelt, arXiv: 1808:06615.
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Luminosity  
Distance

 Luminosity  
distance -redshift relation

Cosmological Parameters
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Redshift



Benjamin Wandelt Simulation image from Illustris-TNG

Both supernovae and 
galaxies are biased tracers of 
the density field. 

Their cross-correlation is 
homogenous and isotropic 
and a function of the 
cosmological parameters. 

Estimate cosmological 
parameters by maximizing 
the correlation and isotropy
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the o↵-diagonal blocks of Eq. (5). As a simplified treat-
ment, we will directly construct a likelihood for the g-sn
correlation to forecast parameter constraints and use in-
formations from both isotropic (l = 0) and anisotropic
(l > 0) part of the correlation function mentioned in
Eq. (4). For any ✓ we can remap both galaxies and SNe
into comoving coordinates ri and estimate ⇠̂g-sn(rij)(✓).
The likelihood will peak for parameters that best remap
the SNe and the galaxies in such a way that their spatial
structures match each other. Near the peak we can write
an approximate, Gaussian log-likelihood

�2Lg-sn =
X

all i,j

(⇠̂g-sn(rij(✓))� ⇠
⇤
g-sn(rij))C

�1
iji0j0

(⇠̂g-sn(ri0j0(✓))� ⇠
⇤
g-sn(ri0j0)).

(7)

C is a model of the covariance of the correlation func-
tion (cf Eq. (9) below) ⇠

⇤
g-sn denotes the (realization-

dependent) cross-correlation function for the best-fit pa-
rameters, i.e., those that map galaxies and SNe into co-
moving coordinates r with maximum cross-correlation.

To forecast parameter constraints, we calculate the
Fisher matrix for this log-likelihood [35]

F✓a✓b =
X

all i,j

@✓a⇠g-sn(rij(✓))|✓fidC
�1

@✓b⇠g-sn(rij(✓))|✓fid

(8)

using the chain rule.
Parameter Forecasts. Using the above prescription,

we forecast the parameter constraints for an upcoming
LSST-like SN catalog. Awaiting a detailed simulation
study to assess the e↵ects of o↵-diagonal terms in the
covariance matrix we approximate the dominant term of
the covariance matrix as diagonal with elements [36]

C(r, r) =
(1 + ⇠g-sn(r))2

N sn
p

, (9)

where N
sn
p is the number of pairs of SN-galaxy samples.

The Gaussian cosmic variance does not figure in this ex-
pression because both ⇠̂g-sn and ⇠

⇤
g-sn are calculated on

the same realization of galaxies and SNe. This is analo-
gous to the cosmic variance cancellation in comparisons
of two or more biased tracers of the same density field
[37–39].

The DL uncertainty �DL is obtained from the intrinsic
scatter �int by the magnitude-distance relation given in
Eq. (1) [12]). We model its e↵ect on �sn as an anisotropic
smearing along the line of sight in the Fourier domain:

�ke
�k2�2

kµ
2
k/2, where µk ⌘ k̂.n̂ and �k ⌘ �DL/(1 + z). In

this analysis we have taken a constant �int = 0.12 mag
according to LSST forecasts [9, 10] and the correlation
function is calculated using Eq. (4) with the non-linear
power spectrum from CLASS [40–42].

We have assumed that the galaxy redshifts are spectro-
scopic, leading to negligible uncertainty �z = 10�4. We

FIG. 1: We show the 68% contour jointly over three
cosmological parameters for the case with total 5⇥ 104

SN samples and 20⇥ 106 galaxies for an optimistic and
a pessimistic case after marginalizing over the SN bias
bsn. The Galaxy bias bg = 1.6 and �int = 0.12 mag are
taken in this analysis. For comparison we also show the
standard DL–z forecasts with optimistic photometric
redshifts. The utopian spectroscopic case is shown for
comparison.

introduce a k-space cut-o↵ kmax = 1h Mpc�1 in Eq. (3);
we discuss in the conclusions why this choice is likely to
be conservative. To assess the possible impact of stochas-
tic small-scale e↵ects we also show the results for a even
more stringent cut-o↵ kmax = 0.5h Mpc�1.

Fig. 1 shows the Fisher forecast 68% error contours
for the cosmological parameters ✓ = {⌦m, wo, wa} for a
fiducial LCDM cosmology with galaxy bias bg = 1.6 and
marginalizing over the SNe bias bsn. In this analysis,
we assume 5 ⇥ 104 SNe and 20⇥ 106 galaxies uniformly
distributed over the z range 0.1 to 0.8 [9].

This indicates that w0 can be constrained with an
accuracy of better than 2.4% and wa is constrained to
an accuracy of better than 20% by this method. For
comparison with the classical test with photometric and
spectroscopic SN redshifts, we perform a Fisher analysis
for the same sets of cosmological parameters using the
luminosity-distance relation in Eq. (1). The likelihood
can be written in terms of the covariance matrix ⌃ for

Luminosity distance–
redshift test using 

SN-galaxy cross 
correlations

• Robust to type 
contamination

• Insensitive to photo-
z systematics

• Suppression of 
cosmic variance 
comes from multi-
tracer approach, as 
expected for 
background test!

S. Mukherjee and B. Wandelt,
arXiv: 1808:06615 .

50,000 SN
20 million galaxies



Dark Sirens with multi-probe AP

• The technique applies to any distance tracer, including dark 
gravitational wave sirens.

• 200 GW events without
EM counterpart suffice to
reach the same precision
on H0 as the SH0ES 
measurement

Mukherjee, BDW, Nissanke & Silvestri arXiv:2007.02943



Can we use this geometrical approach to do 
cosmological inference with BORG?

• Going to a geometric approach decouples the “bias” model 
from cosmological parameters

• By only keeping the cosmological parameter dependence in 
coordinate mapping we can use BORG to do a generalized, 
non-Gaussian, field-based “Alcock-Paczynski” on the light cone

Alcock Paczynski test



A field-based AP test (not just 2-point stats!)

Kodi Ramanah et al., arXiv 1808.07496



High precision inferences
Comparison to standard BAO constraints

Kodi Ramanah et al., arXiv 1808.07496



Focusing on geometry works:
Cosmology and bias parameters decouple!

Cosmology 

Everything else 

Kodi Ramanah et al., arXiv 1808.07496



Relaxed?

Good! Let’s get back to solving the full problem!

Benjamin Wandelt



Good! Let’s get back to solving the full problem!
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The full problem

To succeed we need more freedom than a traditional likelihood approach 
can provide: 

• FREEDOM to make our physical model anything we want
• FREEDOM to project/summarize/cut/mask our data any way we want

Simulating data is much easier than deriving an accurate likelihood.

Can we analyse data if all we can do is simulate it?

Benjamin Wandelt



Simulations are draws from the likelihood
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Simulation based (likelihood-free) 
inference for realistic
data models
with Justin Alsing, Tom Charnock, Stephen Feeney, Francisco Villaescusa, Guilhem

Lavaux

Benjamin Wandelt



Likelihood-free inference 101

simulation

parameters
simulated 
data Draw from prior:

Simulate data:

If :
accept;

else:
reject;

data

?
=

In the limit
Benjamin Wandelt



Likelihood-free inference 101

simulation

parameters
simulated 
data Draw from prior:

Simulate data:

If :
accept;

else:
reject;

data

In the limit

?
=

How to reduce data-space?

Benjamin Wandelt



Reducing data space: massive data compression
n parameters

N data

M summary statistics

n compressed statistics

Score compression: Alsing & Wandelt arXiv:1712.00012;   Heavens, Jimenez & Lahav 2000



Likelihood-free inference 101

simulation

parameters
simulated 
data Draw from prior:

Simulate data:

If :
accept;

else:
reject;

data

In the limit

?
=

How to reduce data-space?

How to explore parameter-space?

✅



Density estimation Likelihood free inference
(DELFI):

Directly learn probability density of parameters
and compressed data

Alsing, Feeney & Wandelt arXiv: 1801.01497

Machine Learning to the rescue!



DELFI
Posterior 
inference
works…

and it’s
much
faster than
MCMC!

Alsing, Wandelt, Feeney
arXiv:1801.01497

(O
(1
00
0)
si
m
ul
at
io
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)



Latest news in DELFI

• New nuisance-hardened compression greatly reduces required number of 
simulations and allows many more parameters (Alsing & Wandelt 
arXiv:1903.01473). 

• New version of DELFI now released including neural density estimators to fit 
the likelihood  (Alsing, Charnock, Feeney, Wandelt arXiv:1903.00007)
• Also includes active learning for deciding where to run simulations

• Can go to much higher number of parameters through a combination of direct 
neural estimates of posterior moments and low-dimensional posterior 
marginals (Jeffrey & Wandelt arXiv:2011.05991, presented at NeurIPS 2020)

Benjamin Wandelt



Moment networks: BBH mergers

BBH merger simulations, LIGO noise



Moment networks: BBH mergers

Jeffrey & Wandelt, arXiv:2011.05991

SBI reconstruction of BBH merger simulations, LIGO noise Validation



Moment networks: CMB foregrounds

Jeffrey & Wandelt, arXiv:2011.05991



Moment networks: CMB foregrounds

Jeffrey & Wandelt, arXiv:2011.05991



But what if you don’t know how to 
compute informative summaries of 

your data?

Machine Learning to the rescue!

Benjamin Wandelt



Automatic Physical Inference with Information 
Maximizing Neural Networks (IMNN)

• Goal: remove the need to “guess” heuristic, informative summaries of the 
data

• Setup: design a neural network that maps the data into a small set of 
maximally informative summaries.

• Training uses physical simulations of the model to maximize the information 
in the summaries about the parameters of the model.

• The achieved loss on a test set is meaningful – it’s the information content of 
the data.

• Can prove that the IMNN computes the optimal (score) compression without 
knowing the likelihood (Wandelt et al., in prep)

Charnock, Lavaux, Wandelt (arXiv:1802:03537)
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10 spherical shells of correlated signal simulations

Example application: weak lensing tomography with 
DELFI & IMNN

Mask and noise

Taylor, et al., arXiv: 1904.05364



Cosmological parameter inferences using 
DELFI and IMNN

Benjamin Wandelt

• First Bayesian weak lensing 
analysis with Non-
Gaussian lensing potential 

• Enabled by DELFI and 
IMNN

Taylor, et al., arXiv: 1904.05364

(see also Diaz Rivero & Dvorkin
arxiv:2007.05535)



How do we get the all these 
simulations we need for LFI/SBI?
Using recent advances in computational physics, stats, and machine learning

Benjamin Wandelt



Leclercq et al: Simbelmynë: Perfectly Parallel n-body sims. 
Opens up new ways to do larger and deeper n-body sims on a broad 

range of computational architectures 

Leclercq et al: arXiv:2003.04925

100% correlation
with serial simulation

<1% error on P(k)
small scales



N. Chartiers et al: CARPool reduces the number of 
needed simulations by orders of magnitude

Convergence 
Acceleration by 
Regression and 
Pooling) uses fast, 
approximate 
surrogates to give 
unbiased, low-
variance estimates 
of full simulation 
results.

N. Chartiers et al: arXiv:2009.08970



F. Villaescusa-Navarro et al.: The QUIJOTE simulations 
to train machine learning surrogates

• Largest release of N-body simulation data to date
– 43,100 full GADGET 3 simulations (1 Gpc)3,   5123 or 10243 particles
– ~1 PB of data

• Goal: quantify statistics information content of non-Gaussian non-
linear density field about cosmological parameters

• Includes full dark matter snapshots, halo and void catalogues,  and 
many pre-computed statistics.

Excellent tool for training machine learning surrogates.

Villaescusa-Navarro et al, arXiv:1909.05273



Kodi Ramanah et al: neural super-resolution of n-
body simulations

Kodi Ramanah et al, arXiv:2001.05519

Uses a Wasserstein-
GAN to generate high-
resolution n-body 
output from low-res 
result and high-res 
initial conditions with 
~ 1% accuracy.



Collaborative project to generate large suites of full, cosmological 
hydrosimulations as a function of cosmological parameters and 
astrophysics models with two different codes (AREPO/Illustris & 
GIZMO/SIMBA). 

Use to train and validate machine learning surrogates, and 
likelihood-free, simulation-based inference.

F. Villaescusa-Navarro et al: arXiv:2010.00619

Cosmology and Astrophysics with Machine Learning



Summary
• Will be awash in data. Many advances in cosmology hinge on solving the 

cosmological inference problem. Let’s solve it! We want:
• The initial conditions of the universe to study the cosmic beginning
• High-accuracy, high-precision inferences of expansion geometry and growth to lift the 

mysteries of dark matter and cosmic acceleration.

• We now have a tool set to attack this problem based on advances in physics, stats, 
and machine/deep learning
• Full physical forward model inference such as BORG
• Neural physical engine layer to model observations from dark matter
• New, geometrical cosmological tests (field-based Alcock-Paczynski and multi-probe 

generalizations) that are robust to model misspecification
• Likelihood-free, simulation-based inference 

• New approaches to solve the simulation problem, e.g
• Perfectly parallel sims with Simbelmynë
• Unbiased variance reduction with CARPool
• High-performance neural surrogates

Benjamin Wandelt



BORG and related projects: aquila-consortium.org

IMNN: bitbucket.org/tomcharnock/imnn/

DELFI: github.com/justinalsing/pydelfi

The Quijote Simulations: github.com/franciscovillaescusa/Quijote-simulations

The Camels Simulations: camel-simulations.org

Simbelmynë perfectly parallel n-body code: simbelmyne.florent-leclercq.eu

Codes
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http://aquila-consortium.org/
https://bitbucket.org/tomcharnock/imnn/
https://github.com/justinalsing/pydelfi
https://github.com/franciscovillaescusa/Quijote-simulations
https://www.camel-simulations.org/
https://github.com/franciscovillaescusa/Quijote-simulations

