
Feature Learning in Infinite-
Width Neural Networks

Greg Yang
Microsoft Research AI

Presenting the 4th Paper of the Tensor Programs Series

Joint work with ex-Microsoft AI Resident Edward Hu

Feature Learning is Crucial in Deep Learning
Imagenet and Resnet

BERT and GPT3

Pretraining and Transfer Learning
Cannot Happen without Feature Learning!

Pretraining and Transfer via Finetuning

• Discard readout layer from pretraining
• Linear Finetuning: Train new readout layer only
• Total Finetuning: Train the entire network

• Our conclusions will apply here as well

Pretraining: cheap large datasets on general domain
If pretraining improves linear

finetuning, then the
embeddings (i.e. features) of
inputs must change during

pretraining!

Current Theory: Neural Tangent Kernel

Naïve	first	order	Taylor	expansion

𝑓 𝑥; 𝜃 − 𝑓 𝑥; 𝜃! ≈ ⟨∇"𝑓 𝑥; 𝜃! , 𝜃 − 𝜃!⟩
so

𝑓# − 𝑓#$% ≈ −𝜂𝐾ℒ′(𝑓# , 𝑦)
Where ℒ is loss, 𝑦 is label, and 𝐾 is the kernel

𝐾 𝑥, 𝑧 = ⟨∇"𝑓 𝑥; 𝜃! , ∇"𝑓 𝑧; 𝜃! ⟩

But NTK Limit Does Not Learn Features!

- Linear evolution – easy to analyze
- Yields optimization and generalization results

Word2Vec example
Will explain later

Feature Learning ∞-Width NN on Real Tasks

• Word2Vec
• Pretraining: learn word embeddings

so that similar words have close
embeddings, in an unsupervised
manner.
• Transfer: word analogy task, e.g.

“what to a queen is as a man to a
woman?”

Feature learning
limit, to be explained• NTK Limit has trivial performance

• Performance is monotonic in width
Similar Results on Metalearning (MAML)

Overview

Our Theoretical Contributions
• Classify all “viable” ∞-width limits

into feature learning and kernel
limits
• Identify “the maximal” feature

learning limit
• Propose the Tensor Programs

technique for deriving its
equations, and more generally, the
limit of any neural computation

Significance
• Framework for studying feature

learning in overparametrized NN
• Formulas for training feature-

learning ∞-width NN in variety of
settings (e.g. pretraining,
metalearning, reinforcement
learning, GANs, etc)
• Mostly solves the problem of

taking ∞-width limits

Our experiments verify this is the right limit

Outline of This Talk

• Parametrizations of Neural Networks
• Dichotomy of Parametrizations
• The “Maximal” Feature Learning Limit
• The Tensor Programs technique for deriving the limit

Outline of This Talk

• Parametrizations of Neural Networks
• Dichotomy of Parametrizations
• The “Maximal” Feature Learning Limit
• The Tensor Programs technique for deriving the limit

abc-Parametrizations

• Consider 𝐿-hidden-layer perceptron
• Input dim 𝑑, output dim 1, width 𝑛, nonlinearity 𝜙, input 𝜉 ∈ ℝG

• Weights 𝑊H ∈ ℝI×G and 𝑊K, … ,𝑊L ∈ ℝI×I and 𝑊LMH ∈ ℝH×I
• ℎH 𝜉 = 𝑊H𝜉 ∈ ℝI

• 𝑥N 𝜉 = 𝜙 ℎN 𝜉 ∈ ℝI, ℎNMH 𝜉 = 𝑊NMH𝑥N 𝜉 ∈ ℝI for 𝑙 = 1,… , 𝐿 − 1
• Network output (i.e. logits) 𝑓 𝜉 = 𝑊LMH𝑥L(𝜉)

An abc-parametrization is given by a set of numbers 𝑎! , 𝑏! ! ∪ {𝑐} s.t.
a) Parametrize each 𝑊! = 𝑛"#!𝑤! where 𝑤! is trained instead of 𝑊!

b) Initialize each 𝑤$%
! ∼ 𝒩(0, 𝑛"&'!)

c) SGD learning rate is 𝜂𝑛"(for some width-independent 𝜂.

Examples

Definition NTK Standard (Pytorch default) Mean Field (𝑳 = 𝟏)

𝑎& 𝑊& = 𝑛$'!𝑤&

U
0 if 𝑙 = 1
1
2 if 𝑙 > 1

0
[0 if 𝑙 = 1
1 if 𝑙 = 2

𝑏& 𝑤()
& ∼ 𝒩(0, 𝑛$*+!) 0

U
0 if 𝑙 = 1
1
2 if 𝑙 > 1

0

𝑐 𝐿𝑅 = 𝜂𝑛$, 0 0 -1

ℎ% 𝜉 = 𝑊%𝜉 ∈ ℝ-, 𝑥& 𝜉 = 𝜙 ℎ& 𝜉 ∈ ℝ-, ℎ&.% 𝜉 = 𝑊&.%𝑥& 𝜉 ∈ ℝ-, 𝑓 𝜉 = 𝑊/.%𝑥/(𝜉)

We are ignoring dependences on input dim 𝑑 (which
should be thought of as a constant)

By changing 𝑎!, 𝑏! while fixing 𝑎! + 𝑏!, we effectively
give each layer 𝑙 its own learning rate.

Why Do We Care About Parametrizations?

• Each parametrization admits an ∞-
width limit
• abc-parametrizations correspond to

natural class of limits, including NTK,
GP, Mean Field, etc

• Parametrizations are important
practically
• E.g. Glorot, He, Fixup

∞-width dynamics

parametrizations

w
idth →

∞

Outline of This Talk

• Parametrizations of Neural Networks
• Dichotomy of Parametrizations
• The “Maximal” Feature Learning Limit
• The Tensor Programs technique for deriving the limit

Outline of This Talk

• Parametrizations of Neural Networks
• Dichotomy of Parametrizations
• The “Maximal” Feature Learning Limit
• The Tensor Programs technique for deriving the limit

Instability and Triviality

• If LR too large w.r.t width (i.e. 𝑐 too small), then logits or
preactivations blow up with width during training
• We say this abc-parametrization is 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒

• If LR too small w.r.t width (i.e. 𝑐 too big), then the NN function
doesn’t evolve in the ∞-width limit
• We say this abc-parametrization is trivial

• Only nontrivial stable abc-parametrizations are meaningful

𝐿𝑅 = 𝜂𝑛$,

What is ruled out?
e.g. higher order generalizations of NTK dynamics like

𝑓#.% − 𝑓# = −⟨𝐾(*), ℒ2 𝑓# , 𝑦 ⊗*⟩

Dynamical Dichotomy Theorem

• Any nontrivial stable abc-parametrization yields a
(discrete-time) ∞-width limit

• When trained for any finite time, this limit either
1. (Feature learning limit) allows the embedding 𝑥L(𝜉)

to evolve nontrivially or
2. (Kernel limit) is described by kernel gradient descent

in function space, but not both.

Interesting consequence:
the NN function must be identically 0 at init in any feature learning limit

Example: NTK

Example: Mean Field
when 𝐿 = 1

for	some	kernel	𝐾,
𝑓#.% − 𝑓# = −𝐾ℒ′(𝑓# , 𝑦)

A Caricature of

There is a set of
inequalities (omitted) in

𝑎& , 𝑏& & ∪ {𝑐} that
characterizes when a

parametrization yields a
feature learning limit.

• The nontrivial stable
params form a high
dimensional polytope

• Feature learning
params form 2 facets

• Everything else is in
kernel regime

Will explain soon

NTK, Standard Param Don’t Learn Features

• Intuition why
• The last layer weights get too

much gradient, relative to
weights in the body

• We want to use larger
learning rate to enable
feature learning, but then
the logits would blow up.

Outline of This Talk

• Parametrizations of Neural Networks
• Dichotomy of Parametrizations
• The “Maximal” Feature Learning Limit
• The Tensor Programs technique for deriving the limit

Outline of This Talk

• Parametrizations of Neural Networks
• Dichotomy of Parametrizations
• The “Maximal” Feature Learning Limit
• The Tensor Programs technique for deriving the limit

Maximal Update Parametrization (𝜇P)

• Modify Standard Param to get Maximal Update Param
• Last layer: divide logits by 𝑛 and use Θ(1) learning rate

• i.e. 𝑎!"# =
#
$
, 𝑐 = 0

• i.e. 𝑓 𝜉 = #
%
𝑤!"#𝑥!(𝜉) where 𝑤&'

!"# ∼ 𝒩 0, #
%

• This alone suffices to enable feature learning

• First layer: increase the gradient by 𝑛 by setting 𝑎H = − H
K , 𝑏H = 1/2

• i.e. ℎ# 𝜉 = 𝑛𝑤#𝜉 where 𝑤&'# ∼ 𝒩 0, #
%

• Needed to enable feature learning in every layer

Maximality of Maximal Update Param

• Maximal Update Param is Maximally Feature Learning: Every layer
learns features (ℎ! 𝜉 , 𝑥! 𝜉 for every 𝑙 will evolve during training).

1-Dimension Degeneracy in abc

• For any 𝜃 ∈ ℝ and 𝑡 ≥ 0, 𝑓(𝜉) at time 𝑡 stays fixed for all input 𝜉 if
𝑎! ← 𝑎! + 𝜃, 𝑏! ← 𝑏! − 𝜃, 𝑐 ← 𝑐 − 2𝜃

Summary

Definition NTK Standard Standard (𝟏/𝒏 LR) Mean Field (𝑳 = 𝟏) Maximal Update

𝑎& 𝑊&

= 𝑛$'!𝑤& U
0 if 𝑙 = 1
1
2

if 𝑙 > 1

0 0
[0 if 𝑙 = 1
1 if 𝑙 = 2 −

1
2

if 𝑙 = 1

0 if 2 ≤ 𝑙 ≤ 𝐿
1
2

if 𝑙 = 𝐿 + 1

𝑏& 𝑤()
&

∼ 𝒩(0, 𝑛$*+!)
0

U
0 if 𝑙 = 1
1
2 if 𝑙 > 1 U

0 if 𝑙 = 1
1
2 if 𝑙 > 1

0 1/2

𝑐 𝐿𝑅 = 𝜂𝑛$, 0 0 1 -1 0

Nontrivial

Stable

Feature Learning -

Any depth

ℎ% 𝜉 = 𝑊%𝜉 ∈ ℝ-, 𝑥& 𝜉 = 𝜙 ℎ& 𝜉 ∈ ℝ-, ℎ&.% 𝜉 = 𝑊&.%𝑥& 𝜉 ∈ ℝ-, 𝑓 𝜉 = 𝑊/.%𝑥/(𝜉)

Equivalent	when	𝐿 = 1 because,	for	𝜃 = 1/2,
𝑎& ← 𝑎& + 𝜃, 𝑏& ← 𝑏& − 𝜃, 𝑐 ← 𝑐 − 2𝜃

Outline of This Talk

• Parametrizations of Neural Networks
• Dichotomy of Parametrizations
• The “Maximal” Feature Learning Limit
• The Tensor Programs technique for deriving the limit

Outline of This Talk

• Parametrizations of Neural Networks
• Dichotomy of Parametrizations
• The “Maximal” Feature Learning Limit
• The Tensor Programs technique for deriving the limit
• Key Idea
• Motivating Example: Linear 1-Hidden-Layer NN
• What is a Tensor Program?
• Master Theorem
• Infinite-Width Limit for All

Outline of This Talk

• Parametrizations of Neural Networks
• Dichotomy of Parametrizations
• The “Maximal” Feature Learning Limit
• The Tensor Programs technique for deriving the limit
• Key Idea
• Motivating Example: Linear 1-Hidden-Layer NN
• What is a Tensor Program?
• Master Theorem
• Infinite-Width Limit for All

Key Theoretical Idea: Tensor Programs

When width is large, every activation vector has
roughly iid coordinates, at any time during training.
Using Tensor Programs, we can recursively calculate

such coordinate distributions, and consequently
understand how the neural network function evolves.

Key Theoretical Idea: Tensor Programs

Outline of This Talk

• Parametrizations of Neural Networks
• Dichotomy of Parametrizations
• The “Maximal” Feature Learning Limit
• The Tensor Programs technique for deriving the limit
• Key Idea
• Motivating Example: Linear 1-Hidden-Layer NN
• What is a Tensor Program?
• Master Theorem
• Infinite-Width Limit for All

Outline of This Talk

• Parametrizations of Neural Networks
• Dichotomy of Parametrizations
• The “Maximal” Feature Learning Limit
• The Tensor Programs technique for deriving the limit
• Key Idea
• Motivating Example: Linear 1-Hidden-Layer NN
• What is a Tensor Program?
• Master Theorem
• Infinite-Width Limit for All

Motivating Example: Linear 1-Hidden-Layer
Assume input and output dim = 1

iid coordinates at init

𝜉𝑓(𝜉)

1st Forward Pass

Converges by
Law of Large Numbers

ℒ′(𝑓 𝜉 , 𝑦)

Converges because
𝑓(𝜉) does

Motivating Example: Linear 1-Hidden-Layer
Assume input and output dim = 1

𝜉ℒ′(𝑓 𝜉 , 𝑦)

1st Backward Pass
Gr

ad
ie

nt
s

Gradients are both approx iid

Motivating Example: Linear 1-Hidden-Layer
Assume input and output dim = 1

Approx iid coordinates.

𝜉𝑓(𝜉)

2nd Forward Pass

Converges by
Law of Large Numbers

ℒ′(𝑓 𝜉 , 𝑦)

Converges because
𝑓(𝜉) does

Linear combinations of

from initialization

Motivating Example: Linear 1-Hidden-Layer
Assume input and output dim = 1

𝜉ℒ′(𝑓 𝜉 , 𝑦)

2nd Backward Pass
Gr

ad
ie

nt
s

Gradients are both approx iid

Repeat for all 𝑡
Weights at any time are linear
combinations of weights from

initialization

Linear 1-Hidden-Layer: Taking the Limit
Assume input and output dim = 1

𝒩(0, 1/𝑛)

𝜉𝑓(𝜉)

1st Forward Pass

𝑈

𝑉

Notation

Linear 1-Hidden-Layer: Taking the Limit
Assume input and output dim = 1

𝜉𝑓(𝜉)

(𝑡 + 1)th Forward Pass

𝑈#

𝑉#

Notation

Linear 1-Hidden-Layer: Taking the Limit
Assume input and output dim = 1

𝜉𝑓(𝜉)

(𝑡 + 1)th Forward Pass

𝑈# = 𝐶#𝑉 + 𝐷#𝑈

𝑉# = 𝐴#𝑉 + 𝐵#𝑈

For any 𝑡, there are coefficients 𝐴# , 𝐵# , 𝐶# , 𝐷# ∈ ℝ,
which converge deterministically, such that

Initial condition: for 𝑡 = 0,
𝐴# = 𝐷# = 1, 𝐵# = 𝐶# = 0

Weights at any time are
linear combinations of

weights from
initialization

Linear 1-Hidden-Layer: Taking the Limit
Assume input and output dim = 1

𝜉
𝑓 𝜉

≈ (𝐴#𝐶# + 𝐵#𝐷#)𝜉

(𝑡 + 1)th Forward Pass

𝑈# = 𝐶#𝑉 + 𝐷#𝑈

𝑉# = 𝐴#𝑉 + 𝐵#𝑈

For any 𝑡, there are coefficients 𝐴# , 𝐵# , 𝐶# , 𝐷# ∈ ℝ,
which converge deterministically, such that

Weights at any time are
linear combinations of

weights from
initialization

Linear 1-Hidden-Layer: Taking the Limit
Assume input and output dim = 1

𝜉
ℒ2 𝑓 𝜉 , 𝑦

≈ ℒ′(𝐴#𝐶# + 𝐵#𝐷# 𝜉, 𝑦)

(𝑡 + 1)th Backward Pass
Gr

ad
ie

nt
s

ℒ′𝜉(𝐶#𝑉 + 𝐷#𝑈) (𝐴#𝑉 + 𝐵#𝑈)ℒ′𝜉

𝑉# = 𝐴#𝑉 + 𝐵#𝑈
𝑈# = 𝐶#𝑉 + 𝐷#𝑈

−
−

Linear 1-Hidden-Layer: Taking the Limit
Assume input and output dim = 1

𝜉𝑓(𝜉)

(𝑡 + 2)th Forward Pass

𝑈#.% = 𝐶#.%𝑉 + 𝐷#.%𝑈
𝐶#.% = 𝐶# − ℒ2𝜉𝐴#
𝐷#.% = 𝐷# − ℒ2𝜉𝐵#

𝑉#.% = 𝐴#.%𝑉 + 𝐵#.%𝑈
𝐴#.% = 𝐴# − ℒ2𝜉𝐶#
𝐵#.% = 𝐵# − ℒ2𝜉𝐷#

Maximal Update Limit of
Linear 1-Hidden-Layer NN

Suppose 𝑑�I = 𝑑��� = 1, LR = 1. Then in 𝑛 → ∞ limit,
𝑓� 𝜉 = 𝐴�𝐶� + 𝐵�𝐷� 𝜉

𝐴�MH, 𝐵�MH = 𝐴�, 𝐵� − ℒ�𝜉 𝐶�, 𝐷�
𝐶�MH, 𝐷�MH = 𝐶�, 𝐷� − ℒ�𝜉 𝐴�, 𝐵�

where ℒ� = ℒ′(𝑓� 𝜉 , 𝑦)
with initial condition 𝐴� = 𝐷� = 1, 𝐵� = 𝐶� = 0.

Linear 1-hidden-layer
width-2 NN

2nd layer weights

1st layer weights

“Diagonal” initialization:
𝐴! 𝐵!
𝐶! 𝐷!

= 𝐼

Maximal Update Limit of
Linear 1-Hidden-Layer NN

with random init

Width- 𝑑4- + 𝑑56#
Linear 1-Hidden-Layer NN

with “diagonal” init

Comparison with Mean Field Limit
- MF Limit expresses everything

in terms of their PDF and is
continuous-time

- This turns update equations
into convolution equations and
obscures their simplicity

Maximal Update Limit of
Linear 1-Hidden-Layer NN

with random init

Width- 𝑑!" + 𝑑#$%
Linear 1-Hidden-Layer NN

with “diagonal” init
This is what we compute for large-
scale experiments like Word2Vec

𝑑4- = 𝑑56# = vocab size
𝑑4- + 𝑑56# = 140𝑘 on text8
𝑑4- + 𝑑56# = 280𝑘 on fil9

1-Hidden-Layer: Summary

• The weight matrices have iid coordinates at initialization
• The function output converges due to Law of Large Numbers
• Gradients have approx. iid coordinates
• So after gradient update, weight coordinates are still approx. iid
• Repeat
• In the linear case, we express weights at any time as linear

combinations of weights from initialization
• This allows us to have efficient calculation of limit

𝐿-Hidden-Layer: An Appetizer

• 𝑛×𝑛 Gaussian random matrix 𝑊 in the middle of network
• Central limit behavior

• 𝑊𝑥 is a Gaussian vector if 𝑥 independent of 𝑊
• Correlation with 𝑊�

• Appears after 1 step of SGD
• no effect in 1st step due to Gradient Independence Phenomenon

• See paper for details of the 𝐿-hidden-layer limit

The Tensor Program Framework
Automates All of These Derivations

Outline of This Talk

• Parametrizations of Neural Networks
• Dichotomy of Parametrizations
• The “Maximal” Feature Learning Limit
• The Tensor Programs technique for deriving the limit
• Key Idea
• Motivating Example: Linear 1-Hidden-Layer NN
• What is a Tensor Program?
• Master Theorem
• Infinite-Width Limit for All

Outline of This Talk

• Parametrizations of Neural Networks
• Dichotomy of Parametrizations
• The “Maximal” Feature Learning Limit
• The Tensor Programs technique for deriving the limit
• Key Idea
• Motivating Example: Linear 1-Hidden-Layer NN
• What is a Tensor Program?
• Master Theorem
• Infinite-Width Limit for All

What is a Tensor Program?
In

iti
al 𝑛

→
∞

𝑛 → ∞

• A set of inductively generated vectors and
scalars, given an initial set of matrices,
vectors, and scalars

What is a Tensor Program?

• A set of inductively generated vectors and
scalars, given an initial set of matrices,
vectors, and scalars
• Generation rules

𝜙(

(
(

(
(
(

)

)
)

)
)
)

𝜙

𝜙

𝜙

𝜙

𝜙

Nonlin

;

;
;

;
;
;

MatMul

Average
1
𝑛
&
!

"

Moment

Linear 1-Hidden-Layer as a Tensor Program
Assume input and output dim = 1

Initial vectors

𝜉𝑓(𝜉)

1st Forward Pass

Initial scalar

Linear 1-Hidden-Layer as a Tensor Program
Assume input and output dim = 1

𝑓(𝜉)

1st Forward Pass

× ×
× ×

× ×
× ×

1
𝑛
&
!

"

NonlinMoment

𝑛 𝑛

Linear 1-Hidden-Layer as a Tensor Program
Assume input and output dim = 1

𝜉ℒ′(𝑓 𝜉 , 𝑦)

1st Backward Pass
Gr

ad
ie

nt
s

Gradients are both approx iid Nonlin Nonlin

Linear 1-Hidden-Layer as a Tensor Program
Assume input and output dim = 1

ℒ′(𝑓 𝜉 , 𝑦)

1st Backward Pass
Gr

ad
ie

nt
s

Nonlin Nonlin

× ×
× ×

× ×
× ×

SGD as a Tensor Program

• 1-hidden-layer
• Only need to use Nonlin and Moment

• 𝐿-hidden-layer
• Need to use MatMul because of 𝑛×𝑛 Gaussian matrix in the middle of

network

Outline of This Talk

• Parametrizations of Neural Networks
• Dichotomy of Parametrizations
• The “Maximal” Feature Learning Limit
• The Tensor Programs technique for deriving the limit
• Key Idea
• Motivating Example: Linear 1-Hidden-Layer NN
• What is a Tensor Program?
• Master Theorem
• Infinite-Width Limit for All

Outline of This Talk

• Parametrizations of Neural Networks
• Dichotomy of Parametrizations
• The “Maximal” Feature Learning Limit
• The Tensor Programs technique for deriving the limit
• Key Idea
• Motivating Example: Linear 1-Hidden-Layer NN
• What is a Tensor Program?
• Master Theorem
• Infinite-Width Limit for All

Master Theorem

Tells you how a Tensor Program behaves in the 𝑛 →
∞ limit.

Master Theorem

If 1) initial scalars converge deterministically and 2)
initial matrices & vectors are sampled as iid Gaussians,
then
• all vectors generated in the program have iid

coordinates in the 𝑛 → ∞ limit, and there are rules
to calculate such limit distributions.

• all scalars generated in the program converge to
deterministic values, and there are rules to calculate
such limit scalars.

Embedding 𝑥& 𝜉 of
input 𝜉 of trained
network

Output (i.e. logits)
of trained network

Outline of This Talk

• Parametrizations of Neural Networks
• Dichotomy of Parametrizations
• The “Maximal” Feature Learning Limit
• The Tensor Programs technique for deriving the limit
• Key Idea
• Motivating Example: Linear 1-Hidden-Layer NN
• What is a Tensor Program?
• Master Theorem
• Infinite-Width Limit for All

Outline of This Talk

• Parametrizations of Neural Networks
• Dichotomy of Parametrizations
• The “Maximal” Feature Learning Limit
• The Tensor Programs technique for deriving the limit
• Key Idea
• Motivating Example: Linear 1-Hidden-Layer NN
• What is a Tensor Program?
• Master Theorem
• Infinite-Width Limit for All

Church-Turing Thesis for Deep Learning

Any “useful” deep learning computation can be
expressed as a Tensor Program.

Consequence: Infinite-Width Limits for All

• SOTA architectures: ResNet, Transformers, etc
• SGD with momentum, weight decay
• Adam, Adadelta, Adafactor, etc
• Natural Gradient Descent
• Pretraining and Finetuning
• Metalearning (e.g. MAML)
• Deep Reinforcement Learning (DQN, DDPG, etc)
• Image Generation (GANs, VAEs, etc)

Tensor Programs “Compile” Finite-Width
Computation to Infinite-Width Computation

To derive the infinite-width limit of
any neural computation (e.g. SGD
training),
1) express it as a Tensor Program,

and
2) mechanically apply the Master

Theorem.

Outline of This Talk

• Parametrizations of Neural Networks
• Dichotomy of Parametrizations
• The “Maximal” Feature Learning Limit
• The Tensor Programs technique for deriving the limit
• Key Idea
• Motivating Example: Linear 1-Hidden-Layer NN
• What is a Tensor Program?
• Master Theorem
• Infinite-Width Limit for All

Summary

Our Contributions
• Classify all abc-parametrizations

and their ∞-width limits
• Identify Maximal Update

Parametrization for maximizing
feature learning
• Propose the Tensor Programs

technique for deriving its
equations, and more generally,
the limit of any neural
computation

Significance
• Framework for studying feature

learning in overparametrized NN
• Formulas for training feature-

learning ∞-width NN in variety
of settings (e.g. pretraining,
metalearning, reinforcement
learning, GANs, etc)
• Mostly solves the problem of

taking ∞-width limits

Looking Ahead

• What kinds of representations are learned?
• How does it inform us about finite neural networks?
• How does this feature learning affect training and generalization?
• How does this jibe with the scaling law of language models?
• Can we train an infinite-width GPT…so GPT∞?
• ... and so many more questions are now ripe for the picking!

Thank you! Question?

Scan to link to paper

Max Learning Rates

Same for Deep MLP

Neural Tangent Limit
• At init, features 𝑥:(𝜉) has

coordinates of size Θ(1)
• After 𝑡 steps, 𝑥; 𝜉 − 𝑥:(𝜉) has

coordinates of size Θ 1/ 𝑛 .
• Feature kernel 𝑥; 𝜉 <𝑥;(𝜁)/𝑛 is

fixed wrt 𝑡 in 𝑛 → ∞ limit
• Pretraining does not improve

transfer learning

Maximal Update Limit
• At init, features 𝑥:(𝜉) has

coordinates of size Θ(1)
• After 𝑡 steps, 𝑥; 𝜉 − 𝑥:(𝜉) has

coordinates of size Θ 1 .
• Feature kernel 𝑥; 𝜉 <𝑥;(𝜁)/𝑛

changes with 𝑡 in 𝑛 → ∞ limit
• Pretraining improves transfer

learning

Let 𝑥(𝜉) denote the last layer features (before output)

Time
index

