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Feature Learning is Crucial in Deep Learning
Imagenet and Resnet

BERT and GPT3

Pretraining and Transfer Learning
Cannot Happen without Feature Learning!



Pretraining and Transfer via Finetuning

• Discard readout layer from pretraining
• Linear Finetuning: Train new readout layer only
• Total Finetuning: Train the entire network

• Our conclusions will apply here as well

Pretraining: cheap large datasets on general domain
If pretraining improves linear 

finetuning, then the 
embeddings (i.e. features) of 
inputs must change during 

pretraining!



Current Theory: Neural Tangent Kernel

Naïve	first	order	Taylor	expansion

𝑓 𝑥; 𝜃 − 𝑓 𝑥; 𝜃! ≈ ⟨∇"𝑓 𝑥; 𝜃! , 𝜃 − 𝜃!⟩
so

𝑓# − 𝑓#$% ≈ −𝜂𝐾ℒ′(𝑓# , 𝑦)
Where ℒ is loss, 𝑦 is label, and 𝐾 is the kernel

𝐾 𝑥, 𝑧 = ⟨∇"𝑓 𝑥; 𝜃! , ∇"𝑓 𝑧; 𝜃! ⟩

But NTK Limit Does Not Learn Features!

- Linear evolution – easy to analyze
- Yields optimization and generalization results



Word2Vec example
Will explain later



Feature Learning ∞-Width NN on Real Tasks

• Word2Vec
• Pretraining: learn word embeddings 

so that similar words have close 
embeddings, in an unsupervised 
manner.
• Transfer: word analogy task, e.g. 

“what to a queen is as a man to a 
woman?”

Feature learning 
limit, to be explained• NTK Limit has trivial performance

• Performance is monotonic in width
Similar Results on Metalearning (MAML)



Overview

Our Theoretical Contributions
• Classify all “viable” ∞-width limits 

into feature learning and kernel 
limits
• Identify “the maximal” feature 

learning limit
• Propose the Tensor Programs

technique for deriving its 
equations, and more generally, the 
limit of any neural computation

Significance
• Framework for studying feature 

learning in overparametrized NN
• Formulas for training feature-

learning ∞-width NN in variety of 
settings (e.g. pretraining, 
metalearning, reinforcement 
learning, GANs, etc)
• Mostly solves the problem of 

taking ∞-width limits

Our experiments verify this is the right limit
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abc-Parametrizations

• Consider 𝐿-hidden-layer perceptron
• Input dim 𝑑, output dim 1, width 𝑛, nonlinearity 𝜙, input 𝜉 ∈ ℝG

• Weights 𝑊H ∈ ℝI×G and 𝑊K, … ,𝑊L ∈ ℝI×I and 𝑊LMH ∈ ℝH×I
• ℎH 𝜉 = 𝑊H𝜉 ∈ ℝI

• 𝑥N 𝜉 = 𝜙 ℎN 𝜉 ∈ ℝI, ℎNMH 𝜉 = 𝑊NMH𝑥N 𝜉 ∈ ℝI for 𝑙 = 1,… , 𝐿 − 1
• Network output (i.e. logits) 𝑓 𝜉 = 𝑊LMH𝑥L(𝜉)

An abc-parametrization is given by a set of numbers 𝑎! , 𝑏! ! ∪ {𝑐} s.t.
a) Parametrize each 𝑊! = 𝑛"#!𝑤! where 𝑤! is trained instead of 𝑊!

b) Initialize each 𝑤$%
! ∼ 𝒩(0, 𝑛"&'!)

c) SGD learning rate is 𝜂𝑛"( for some width-independent 𝜂.



Examples

Definition NTK Standard (Pytorch default) Mean Field (𝑳 = 𝟏)

𝑎& 𝑊& = 𝑛$'!𝑤&

U
0 if 𝑙 = 1
1
2 if 𝑙 > 1

0
[0 if 𝑙 = 1
1 if 𝑙 = 2

𝑏& 𝑤()
& ∼ 𝒩(0, 𝑛$*+!) 0

U
0 if 𝑙 = 1
1
2 if 𝑙 > 1

0

𝑐 𝐿𝑅 = 𝜂𝑛$, 0 0 -1

ℎ% 𝜉 = 𝑊%𝜉 ∈ ℝ-, 𝑥& 𝜉 = 𝜙 ℎ& 𝜉 ∈ ℝ-, ℎ&.% 𝜉 = 𝑊&.%𝑥& 𝜉 ∈ ℝ-,    𝑓 𝜉 = 𝑊/.%𝑥/(𝜉)

We are ignoring dependences on input dim 𝑑 (which 
should be thought of as a constant)

By changing 𝑎!, 𝑏! while fixing 𝑎! + 𝑏!, we effectively 
give each layer 𝑙 its own learning rate.



Why Do We Care About Parametrizations?

• Each parametrization admits an ∞-
width limit
• abc-parametrizations correspond to 

natural class of limits, including NTK, 
GP, Mean Field, etc

• Parametrizations are important 
practically
• E.g. Glorot, He, Fixup

∞-width dynamics

parametrizations

w
idth →

∞
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Instability and Triviality

• If LR too large w.r.t width (i.e. 𝑐 too small), then logits or 
preactivations blow up with width during training
• We say this abc-parametrization is 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒

• If LR too small w.r.t width (i.e. 𝑐 too big), then the NN function 
doesn’t evolve in the ∞-width limit
• We say this abc-parametrization is trivial

• Only nontrivial stable abc-parametrizations are meaningful

𝐿𝑅 = 𝜂𝑛$,



What is ruled out?
e.g. higher order generalizations of NTK dynamics like

𝑓#.% − 𝑓# = −⟨𝐾(*), ℒ2 𝑓# , 𝑦 ⊗*⟩

Dynamical Dichotomy Theorem

• Any nontrivial stable abc-parametrization yields a 
(discrete-time) ∞-width limit

• When trained for any finite time, this limit either
1. (Feature learning limit) allows the embedding 𝑥L(𝜉)

to evolve nontrivially or
2. (Kernel limit) is described by kernel gradient descent 

in function space, but not both.

Interesting consequence:
the NN function must be identically 0 at init in any feature learning limit

Example: NTK

Example: Mean Field 
when 𝐿 = 1

for	some	kernel	𝐾,
𝑓#.% − 𝑓# = −𝐾ℒ′(𝑓# , 𝑦)



A Caricature of

There is a set of 
inequalities (omitted) in 

𝑎& , 𝑏& & ∪ {𝑐} that 
characterizes when a 

parametrization yields a 
feature learning limit.

• The nontrivial stable
params form a high 
dimensional polytope

• Feature learning 
params form 2 facets

• Everything else is in 
kernel regime

Will explain soon



NTK, Standard Param Don’t Learn Features

• Intuition why
• The last layer weights get too 

much gradient, relative to 
weights in the body

• We want to use larger 
learning rate to enable 
feature learning, but then 
the logits would blow up.
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Maximal Update Parametrization (𝜇P)

• Modify Standard Param to get Maximal Update Param
• Last layer: divide logits by 𝑛 and use Θ(1) learning rate

• i.e. 𝑎!"# =
#
$
, 𝑐 = 0

• i.e. 𝑓 𝜉 = #
%
𝑤!"#𝑥!(𝜉) where 𝑤&'

!"# ∼ 𝒩 0, #
%

• This alone suffices to enable feature learning

• First layer: increase the gradient by 𝑛 by setting 𝑎H = − H
K , 𝑏H = 1/2

• i.e. ℎ# 𝜉 = 𝑛𝑤#𝜉 where 𝑤&'# ∼ 𝒩 0, #
%

• Needed to enable feature learning in every layer



Maximality of Maximal Update Param

• Maximal Update Param is Maximally Feature Learning: Every layer 
learns features (ℎ! 𝜉 , 𝑥! 𝜉 for every 𝑙 will evolve during training).



1-Dimension Degeneracy in abc

• For any 𝜃 ∈ ℝ and 𝑡 ≥ 0, 𝑓(𝜉) at time 𝑡 stays fixed for all input 𝜉 if
𝑎! ← 𝑎! + 𝜃, 𝑏! ← 𝑏! − 𝜃, 𝑐 ← 𝑐 − 2𝜃



Summary

Definition NTK Standard Standard (𝟏/𝒏 LR) Mean Field (𝑳 = 𝟏) Maximal Update

𝑎& 𝑊&

= 𝑛$'!𝑤& U
0 if 𝑙 = 1
1
2

if 𝑙 > 1

0 0
[0 if 𝑙 = 1
1 if 𝑙 = 2 −

1
2

if 𝑙 = 1

0 if 2 ≤ 𝑙 ≤ 𝐿
1
2

if 𝑙 = 𝐿 + 1

𝑏& 𝑤()
&

∼ 𝒩(0, 𝑛$*+!)
0

U
0 if 𝑙 = 1
1
2 if 𝑙 > 1 U

0 if 𝑙 = 1
1
2 if 𝑙 > 1

0 1/2

𝑐 𝐿𝑅 = 𝜂𝑛$, 0 0 1 -1 0

Nontrivial

Stable

Feature Learning -

Any depth

ℎ% 𝜉 = 𝑊%𝜉 ∈ ℝ-, 𝑥& 𝜉 = 𝜙 ℎ& 𝜉 ∈ ℝ-, ℎ&.% 𝜉 = 𝑊&.%𝑥& 𝜉 ∈ ℝ-,    𝑓 𝜉 = 𝑊/.%𝑥/(𝜉)

Equivalent	when	𝐿 = 1 because,	for	𝜃 = 1/2,
𝑎& ← 𝑎& + 𝜃, 𝑏& ← 𝑏& − 𝜃, 𝑐 ← 𝑐 − 2𝜃
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Key Theoretical Idea: Tensor Programs

When width is large, every activation vector has 
roughly iid coordinates, at any time during training. 
Using Tensor Programs, we can recursively calculate 

such coordinate distributions, and consequently 
understand how the neural network function evolves.



Key Theoretical Idea: Tensor Programs
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Motivating Example: Linear 1-Hidden-Layer
Assume input and output dim = 1

iid coordinates at init

𝜉𝑓(𝜉)

1st Forward Pass

Converges by
Law of Large Numbers

ℒ′(𝑓 𝜉 , 𝑦)

Converges because 
𝑓(𝜉) does



Motivating Example: Linear 1-Hidden-Layer
Assume input and output dim = 1

𝜉ℒ′(𝑓 𝜉 , 𝑦)

1st Backward Pass
Gr

ad
ie

nt
s

Gradients are both approx iid



Motivating Example: Linear 1-Hidden-Layer
Assume input and output dim = 1

Approx iid coordinates.

𝜉𝑓(𝜉)

2nd Forward Pass

Converges by
Law of Large Numbers

ℒ′(𝑓 𝜉 , 𝑦)

Converges because 
𝑓(𝜉) does

Linear combinations of

from initialization



Motivating Example: Linear 1-Hidden-Layer
Assume input and output dim = 1

𝜉ℒ′(𝑓 𝜉 , 𝑦)

2nd Backward Pass
Gr

ad
ie

nt
s

Gradients are both approx iid

Repeat for all 𝑡
Weights at any time are linear 
combinations of weights from 

initialization



Linear 1-Hidden-Layer: Taking the Limit
Assume input and output dim = 1

𝒩(0, 1/𝑛)

𝜉𝑓(𝜉)

1st Forward Pass

𝑈

𝑉

Notation



Linear 1-Hidden-Layer: Taking the Limit
Assume input and output dim = 1

𝜉𝑓(𝜉)

(𝑡 + 1)th Forward Pass

𝑈#

𝑉#

Notation



Linear 1-Hidden-Layer: Taking the Limit
Assume input and output dim = 1

𝜉𝑓(𝜉)

(𝑡 + 1)th Forward Pass

𝑈# = 𝐶#𝑉 + 𝐷#𝑈

𝑉# = 𝐴#𝑉 + 𝐵#𝑈

For any 𝑡, there are coefficients 𝐴# , 𝐵# , 𝐶# , 𝐷# ∈ ℝ, 
which converge deterministically, such that

Initial condition: for 𝑡 = 0,
𝐴# = 𝐷# = 1, 𝐵# = 𝐶# = 0

Weights at any time are 
linear combinations of 

weights from 
initialization



Linear 1-Hidden-Layer: Taking the Limit
Assume input and output dim = 1

𝜉
𝑓 𝜉

≈ (𝐴#𝐶# + 𝐵#𝐷#)𝜉

(𝑡 + 1)th Forward Pass

𝑈# = 𝐶#𝑉 + 𝐷#𝑈

𝑉# = 𝐴#𝑉 + 𝐵#𝑈

For any 𝑡, there are coefficients 𝐴# , 𝐵# , 𝐶# , 𝐷# ∈ ℝ, 
which converge deterministically, such that

Weights at any time are 
linear combinations of 

weights from 
initialization



Linear 1-Hidden-Layer: Taking the Limit
Assume input and output dim = 1

𝜉
ℒ2 𝑓 𝜉 , 𝑦

≈ ℒ′( 𝐴#𝐶# + 𝐵#𝐷# 𝜉, 𝑦)

(𝑡 + 1)th Backward Pass
Gr

ad
ie

nt
s

ℒ′𝜉(𝐶#𝑉 + 𝐷#𝑈) (𝐴#𝑉 + 𝐵#𝑈)ℒ′𝜉

𝑉# = 𝐴#𝑉 + 𝐵#𝑈
𝑈# = 𝐶#𝑉 + 𝐷#𝑈

−
−



Linear 1-Hidden-Layer: Taking the Limit
Assume input and output dim = 1

𝜉𝑓(𝜉)

(𝑡 + 2)th Forward Pass

𝑈#.% = 𝐶#.%𝑉 + 𝐷#.%𝑈
𝐶#.% = 𝐶# − ℒ2𝜉𝐴#
𝐷#.% = 𝐷# − ℒ2𝜉𝐵#

𝑉#.% = 𝐴#.%𝑉 + 𝐵#.%𝑈
𝐴#.% = 𝐴# − ℒ2𝜉𝐶#
𝐵#.% = 𝐵# − ℒ2𝜉𝐷#



Maximal Update Limit of
Linear 1-Hidden-Layer NN

Suppose 𝑑�I = 𝑑��� = 1, LR = 1. Then in 𝑛 → ∞ limit,
𝑓� 𝜉 = 𝐴�𝐶� + 𝐵�𝐷� 𝜉

𝐴�MH, 𝐵�MH = 𝐴�, 𝐵� − ℒ�𝜉 𝐶�, 𝐷�
𝐶�MH, 𝐷�MH = 𝐶�, 𝐷� − ℒ�𝜉 𝐴�, 𝐵�

where ℒ� = ℒ′(𝑓� 𝜉 , 𝑦)
with initial condition 𝐴� = 𝐷� = 1, 𝐵� = 𝐶� = 0.

Linear 1-hidden-layer
width-2 NN

2nd layer weights

1st layer weights

“Diagonal” initialization: 
𝐴! 𝐵!
𝐶! 𝐷!

= 𝐼

Maximal Update Limit of
Linear 1-Hidden-Layer NN

with random init

Width- 𝑑4- + 𝑑56#
Linear 1-Hidden-Layer NN

with “diagonal” init

Comparison with Mean Field Limit
- MF Limit expresses everything 

in terms of their PDF and is 
continuous-time

- This turns update equations 
into convolution equations and 
obscures their simplicity



Maximal Update Limit of
Linear 1-Hidden-Layer NN

with random init

Width- 𝑑!" + 𝑑#$%
Linear 1-Hidden-Layer NN

with “diagonal” init
This is what we compute for large-
scale experiments like Word2Vec

𝑑4- = 𝑑56# = vocab size
𝑑4- + 𝑑56# = 140𝑘 on text8
𝑑4- + 𝑑56# = 280𝑘 on fil9



1-Hidden-Layer: Summary

• The weight matrices have iid coordinates at initialization
• The function output converges due to Law of Large Numbers
• Gradients have approx. iid coordinates
• So after gradient update, weight coordinates are still approx. iid
• Repeat
• In the linear case, we express weights at any time as linear 

combinations of weights from initialization
• This allows us to have efficient calculation of limit



𝐿-Hidden-Layer: An Appetizer

• 𝑛×𝑛 Gaussian random matrix 𝑊 in the middle of network
• Central limit behavior

• 𝑊𝑥 is a Gaussian vector if 𝑥 independent of 𝑊
• Correlation with 𝑊�

• Appears after 1 step of SGD
• no effect in 1st step due to Gradient Independence Phenomenon

• See paper for details of the 𝐿-hidden-layer limit



The Tensor Program Framework
Automates All of These Derivations
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What is a Tensor Program?
In

iti
al 𝑛

→
∞

𝑛 → ∞

• A set of inductively generated vectors and 
scalars, given an initial set of matrices, 
vectors, and scalars



What is a Tensor Program?

• A set of inductively generated vectors and 
scalars, given an initial set of matrices, 
vectors, and scalars
• Generation rules

𝜙(

(
(

(
(
(

)

)
)

)
)
)

𝜙

𝜙

𝜙

𝜙

𝜙

Nonlin

;

;
;

;
;
;

MatMul

Average
1
𝑛
&
!

"

Moment



Linear 1-Hidden-Layer as a Tensor Program
Assume input and output dim = 1

Initial vectors

𝜉𝑓(𝜉)

1st Forward Pass

Initial scalar



Linear 1-Hidden-Layer as a Tensor Program
Assume input and output dim = 1

𝑓(𝜉)

1st Forward Pass

× ×
× ×

× ×
× ×

1
𝑛
&
!

"

NonlinMoment

𝑛 𝑛



Linear 1-Hidden-Layer as a Tensor Program
Assume input and output dim = 1

𝜉ℒ′(𝑓 𝜉 , 𝑦)

1st Backward Pass
Gr

ad
ie

nt
s

Gradients are both approx iid Nonlin Nonlin



Linear 1-Hidden-Layer as a Tensor Program
Assume input and output dim = 1

ℒ′(𝑓 𝜉 , 𝑦)

1st Backward Pass
Gr

ad
ie

nt
s

Nonlin Nonlin

× ×
× ×

× ×
× ×



SGD as a Tensor Program

• 1-hidden-layer
• Only need to use Nonlin and Moment

• 𝐿-hidden-layer
• Need to use MatMul because of 𝑛×𝑛 Gaussian matrix in the middle of 

network
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Master Theorem

Tells you how a Tensor Program behaves in the 𝑛 →
∞ limit.



Master Theorem

If 1) initial scalars converge deterministically and 2) 
initial matrices & vectors are sampled as iid Gaussians, 
then
• all vectors generated in the program have iid 

coordinates in the 𝑛 → ∞ limit, and there are rules 
to calculate such limit distributions.

• all scalars generated in the program converge to 
deterministic values, and there are rules to calculate 
such limit scalars.

Embedding 𝑥& 𝜉 of 
input 𝜉 of trained 
network

Output (i.e. logits) 
of trained network
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Church-Turing Thesis for Deep Learning

Any “useful” deep learning computation can be 
expressed as a Tensor Program.



Consequence: Infinite-Width Limits for All

• SOTA architectures: ResNet, Transformers, etc
• SGD with momentum, weight decay
• Adam, Adadelta, Adafactor, etc
• Natural Gradient Descent
• Pretraining and Finetuning
• Metalearning (e.g. MAML)
• Deep Reinforcement Learning (DQN, DDPG, etc)
• Image Generation (GANs, VAEs, etc)



Tensor Programs “Compile” Finite-Width 
Computation to Infinite-Width Computation

To derive the infinite-width limit of 
any neural computation (e.g. SGD 
training), 
1) express it as a Tensor Program, 

and 
2) mechanically apply the Master 

Theorem.
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Summary

Our Contributions
• Classify all abc-parametrizations 

and their ∞-width limits
• Identify Maximal Update 

Parametrization for maximizing 
feature learning
• Propose the Tensor Programs

technique for deriving its 
equations, and more generally, 
the limit of any neural 
computation

Significance
• Framework for studying feature 

learning in overparametrized NN
• Formulas for training feature-

learning ∞-width NN in variety 
of settings (e.g. pretraining, 
metalearning, reinforcement 
learning, GANs, etc)
• Mostly solves the problem of 

taking ∞-width limits



Looking Ahead

• What kinds of representations are learned?
• How does it inform us about finite neural networks?
• How does this feature learning affect training and generalization?
• How does this jibe with the scaling law of language models?
• Can we train an infinite-width GPT…so GPT∞?
• ... and so many more questions are now ripe for the picking!



Thank you! Question?

Scan to link to paper



Max Learning Rates



Same for Deep MLP

Neural Tangent Limit
• At init, features 𝑥:(𝜉) has 

coordinates of size Θ(1)
• After 𝑡 steps, 𝑥; 𝜉 − 𝑥:(𝜉) has 

coordinates of size Θ 1/ 𝑛 .
• Feature kernel 𝑥; 𝜉 <𝑥;(𝜁)/𝑛 is 

fixed wrt 𝑡 in 𝑛 → ∞ limit
• Pretraining does not improve 

transfer learning

Maximal Update Limit
• At init, features 𝑥:(𝜉) has 

coordinates of size Θ(1)
• After 𝑡 steps, 𝑥; 𝜉 − 𝑥:(𝜉) has 

coordinates of size Θ 1 .
• Feature kernel 𝑥; 𝜉 <𝑥;(𝜁)/𝑛

changes with 𝑡 in 𝑛 → ∞ limit
• Pretraining improves transfer 

learning

Let 𝑥(𝜉) denote the last layer features (before output)
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