


Explore with a small model



Model fails to train when scaled up

with the same hyperparameters



An Example of

What This Work Allows You To Do

Before After



Enter Maximal Update Parametrization, abbreviated 𝜇P

Note: focus on scaling with fan_in or fan_out; everything else is a tunable constant

A principled way of scaling initialization and learning rate with width



Key Property of 𝜇P: Hyperparameter Stability
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Increasing width

Hyperparameter

Tr
a

in
in

g
 P

e
rf

o
rm

a
n

c
e

Standard Parametrization



Key Property of 𝜇P: Hyperparameter Stability

Transformer on WikiText-2

Trained by Adam



𝜇Transfer: Zero-Shot Hyperparameter Transfer

𝜇Transfer

You don’t need to tune the 

small model if you don’t 

want to!

--- You can 𝜇Transfer any 

existing set of 

hyperparameters you like 

from a small model to a 

large model!

“Transfer” = optimal hyperparameter remains stable with model size

Prohibitively expensive for large models



CAREFUL VALIDATION ON MODELS OF INCREASING SCALE

MLP

CIFAR10

Transformer

Wikitext2

Transformer

IWSLT14

BERT

GPT3

WideResNet-50

Imagenet

Transformer

WMT14



PRACTICAL BENEFITS OF 𝜇P

 Preserves hyperparameter optimum across width

 Allows zero-shot hyperparameter transfer

 Efficient tuning

 Can tune enormous models only on a single GPU

 Very fast

 The only method for tuning large models

 Altogether enable more reliable scaling-up of neural networks



WHAT DO THESE HAVE IN COMMON?

Manhattan Project Space Program
Large pretrained language/vision models

• Impressive achievements of humankind

• Each empirical test is very expensive

• Require extensive theoretical calculation first before launching any empirical test

How to train large models reliably and optimally?



ECONOMY OF INSIGHTS AT SCALE

problem scale

Cost of insight

Empirical Insight

Theoretical Insight

Large Scale 

Pretraining

growing larger

CIFAR10 Space

Program

“principled ways of 

doing things”

𝜇P





What is Maximal Update Parametrization?



WARMUP: MLP

Standard Parametrization (SP)

𝜇-Parametrization (𝜇P)

LR 𝜂

𝑛 = 𝑤𝑖𝑑𝑡ℎ, 𝑑𝑖𝑛 = 𝑑𝑎𝑡𝑎 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛



WARMUP: MLP

𝜇-Parametrization (𝜇P)

𝑛 = 𝑤𝑖𝑑𝑡ℎ, 𝑑𝑖𝑛 = 𝑑𝑎𝑡𝑎 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛

Why?

𝑓 𝜉 = 

𝛼=1

𝑛

𝑊𝛼
3𝜙 ⋯ 𝛼

Correlated during training 

→ Law of Large Numbers!

→ Not Central Limit!

Θ(1)

Θ(1/𝑛)

= Θ(1)𝑓 𝜉 = 

𝛼=1

𝑛

𝑊𝛼
3𝜙 ⋯ 𝛼

Θ(1)

Θ(1)

= Θ(𝑛)

Standard Param (SP)
- didn’t think about correlation during training!



𝜇-PARAMETRIZATION IN GENERAL

Note: focus on scaling with fan_in or fan_out; everything else is a tunable constant

For Transformers, also use 1/𝑑 instead of 1/ 𝑑 attention, i.e. the attention logit is calculated as 

𝑘⊤𝑞/𝑑 instead of 𝑘⊤𝑞/ 𝑑 where query 𝑞 and key 𝑘 have dimension 𝑑.



Which 

Hyperparameters 

Can Be 𝜇Transferred?



- Why not regularization?

- The amount of regularization (for the purpose of controlling overfitting) naturally 

depends on both the model size and data size

- so we should not expect transfer to work if the parametrization only 

depends on model size (width)

- Therefore, if regularization is the bottleneck of performance of a large model, 

𝜇P may not help with that

- Luckily, for large scale pretraining, we still have too much data so regularization 

is not a bottleneck

- While transfer across width is justified by theory, we empirically explore transferring 

across other scale dimensions like depth, batch size, training time, seq length.

- But without theoretical understanding, we cannot be as confident that these 

results hold beyond the reasonable scales and the problem settings we did 

experiments in



Verifying Transfer Across Width

(XEnt Temp)

postLN

Transformer

preLN

Transformer



What if We Change Width Ratio?



You Can Vary Both 𝑑ℎ𝑒𝑎𝑑 and 𝑛ℎ𝑒𝑎𝑑



WIDER IS BETTER THROUGHOUT TRAINING



EXPLORING EMPIRICAL TRANSFER ACROSS DEPTH

preLN

Transformer

postLN

Transformer
Doesn’t work



EXPLORING EMPIRICAL TRANSFER ACROSS OTHER DIMENSIONS

Batch Size

Seq Len

Training Time

preLN

Transformer



EXPLORING EMPIRICAL TRANSFER ACROSS OTHER DIMENSIONS

Batch Size

Seq Len

Training Time

postLN

Transformer



Empirical Efficacy of 𝜇Transfer



CAREFUL VALIDATION ON MODELS OF INCREASING SCALE

MLP

CIFAR10

Transformer

Wikitext2

Transformer

IWSLT14

BERT

GPT3



Transformer on IWSLT14 De-En

Standard Parametrization 𝜇P + 𝜇Transfer



Performance-Compute Pareto Frontier

𝜇Transfer Dominates Conventional HP Tuning

IWSLT Transformer is still fairly small --- efficiency only goes up with model scale!



CAREFUL VALIDATION ON MODELS OF INCREASING SCALE
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CAREFUL VALIDATION ON MODELS OF INCREASING SCALE

MLP

CIFAR10

Transformer

Wikitext2

Transformer

IWSLT14

BERT

GPT3



Step 1:
Parameterize BERT in 𝜇P

Step 2:
Tune hyperparameters on BERTSMALL via random search 

(256 combinations), training only for 10% of tokens

Step 3:
Copy the best hyperparameter combination to BERTBASE  

and BERTLARGE

✓ Tune once, use for a family of models

✓ Only run the large models once

Tuning BERT with 𝜇Transfer

The total tuning cost is equivalent to 1 

full training run of BERT-large



CAREFUL VALIDATION ON MODELS OF INCREASING SCALE

MLP

CIFAR10

Transformer

Wikitext2

Transformer

IWSLT14

BERT

GPT3



CAREFUL VALIDATION ON MODELS OF INCREASING SCALE

MLP

CIFAR10

Transformer

Wikitext2

Transformer

IWSLT14

BERT

GPT3



OpenAI GPT-3 Family + 𝜇P

Hyperparameter Optimum is Stable Wider is Always Better Given the Same HPs



OpenAI GPT-3 6.7B + 𝜇Transfer

Total tuning compute budget is only 7% of training budget!!!



Theoretical Foundation



WHAT IS A PARAMETRIZATION?

• Tells you how to scale HP when model size changes

• “half learning rate when width doubles”

• Doesn’t tell you how to set specific values of HP at particular model sizes

• “use learning rate 1e-3 at width 1024”

• For any fixed model size, all parametrizations are equivalent up to tunable HP

• Parametrization gives a way for expressing hyperparameters, just like a 

basis gives a way to express vectors in a vector space

• A priori, there is no canonical parametrization, just like a priori there is no 

canonical basis in a vector space

? ? ?

? ? ?

? ? ?



EACH PARAMETRIZATION CORRESPONDS TO A ∞-WIDTH LIMIT

∞-width dynamics

parametrizations

w
id

th
 →

∞

“The” Feature Learning Limit

NTK

NTK

Maximal Update



OPTIMAL SCALING THESIS

Maximal Limit
Its limit maximizes feature learning 

(without blowing up)

HP Transfer
A parametrization preserves HP 

optimum across model sizes

This is a thesis for any notion of model size: width, depth, #experts, etc

Verify theoreticallyVerify empirically



OPTIMAL SCALING THESIS



“PROVING” OPTIMAL SCALING THESIS FOR WIDTH



Dynamical Dichotomy Theorem
A Caricature of

Space of Parametrizations

Training blows up

Training stuck at init

• Function evolution described 

by functional equation for 

some kernel 𝐾
𝑓𝑡+1 − 𝑓𝑡 = −𝜂𝐾ℒ′(𝑓𝑡)
• No feature learning

• Feature learning

• Function evolution cannot

be described purely in the 

function space



“PROOF” OF OPTIMAL SCALING THESIS FOR WIDTH

A Caricature of

Space of Parametrizations
• Obviously unstable or trivial parametrizations won’t work

• E.g., optimal learning rate will converge to 0 or diverge.

• Kernel regime parametrizations have trivial performance on 

pretraining tasks

• E.g., NTK performs trivially on Word2vec; see TP4

• Nonmaximal feature learning limits differ from 𝜇P’s (maximal) 

limit only in that some parameters are stuck at init, ignoring 

the learning rate

• But in finite networks, for such parameters, learning rate 

obviously has nontrivial effect --- so there’s no way we 

can expect transfer

• The only parametrization left is 𝜇P



TENSOR PROGRAMS



WHAT IS A TENSOR PROGRAM?

• A computation composed of 1) matrix multiplication and 2) 
coordinatewise nonlinearities

Key Insight 1

Church-Turing Thesis for Deep Learning

Any “useful” deep learning computation can be 

expressed as a Tensor Program.



Key Insight 2

∞-Width Limit for Any Tensor Program

One can prove a Master Theorem that reduces the 

calculation of ∞-width limit to a set of mechanical 

calculations

Autograd gradients

Master Theorem ∞-width limit





THE TENSOR PROGRAMS SERIES
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TP0 TP1 TP2 TP3 TP4Start 

working 

on TP

TP6?

Building the theoretical foundation of TP

Introduces 𝜇P and the 

feature learning limit

TP5

Introduces 𝜇Transfer

Start 

working on 

TP4

Start 

working 

on TP5

Practical 

Usefulness

OpenAI 

joins TP5



CONCLUSION



LOOKING FORWARD: THE THEORY OF EVERYTHING

 𝜇P solves the transfer problem for width in a principled way. Can we do it for all other compute hyperparameters?

 Ex: depth, #experts, training time, sequence length

 Naïve transfer seems to work OK empirically, but as we go to larger scales, likely they will break down

 Verify the Optimal Scaling Thesis

 This is akin to the search for the Theory of Everything in physics

 The different scale hyperparameters of a neural network are like the different fundamental forces of nature

 We look for a theory that tells us how to scale every aspect of a model together, just like physicists look for a GUT unifying all 

fundamental forces of nature



Paper Pytorch library for 𝜇P

> pip install mup

> git clone github.com/microsoft/mup

OR


