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Enter Maximal Update Parametrization, abbreviated uP

A principled way of scaling initialization and learning rate with width

Input weights & all biases Output weights Hidden weights
Init. Var. 1/fan_in 1/fan_in2 ('l'/fn.n_in) 1/fan_in
SGD LR fa,n_out ( l) 1/fan_i n ( 1) 1
Adam LR 1 1 / fan_in (l ) 1 / fan_in (1)

Note: focus on scaling with fan_in or fan_out; everything else is a tunable constant



Key Property of uP: Hyperparameter Stability

Standard Parametrization Maximal Update Parametrization (uP)
Increasing width Increasing width
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uTransfer: Zero-Shot Hyperparameter Transfer

Prohibitively expensive for large models

$$S$$S
T o
© .2
S
2 a
Dlrectly tune large model
You don’t need to tune the
o U small model if you don’t
P t tol
= want to!
uTransfer v 3%
= 3 —- You can uTransfer any
g ﬁ existing set of

hyperparameters you like
from a small model to a
large model!

Shrink Tune Transfer

“Transfer” = optimal hyperparameter remains stable with model size



CAREFUL VALIDATION ON MODELS OF INCREASING SCALE

MLP Transformer Transformer GPT3
CIFAR10 IWSLT14 WMT14
Transformer WideResNet-50 BERT

Wikitext2 Imagenet



PRACTICAL BENEFITS OF nP

" Preserves hyperparameter optimum across width

= Allows zero-shot hyperparameter transfer

= Efficient tuning
= Cantune enormous models only on a single GPU
= Very fast

= The only method for tuning large models

= Altogether enable more reliable scaling-up of neural networks




WHAT DO THESE HAVE IN COMMON?

_ Large pretrained language/vision models
Manhattan Project Space Program

Pre-training Fine-tuning
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better at a certain task
How to train large models reliably and optimally?
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* Impressive achievements of humankind
 Each empirical test is very expensive
* Require extensive theoretical calculation first before launching any empirical test



ECONOMY OF INSIGHTS AT SCALE
growing larger

CIFAR10 Large Scale  p— Space
Pretraining Program

Empirical Insight

Cost of insight

Theoretical Insight

“principled ways of
doing things”

_____________________________________________________________________

problem scale
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CONCLUSION
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What is Maximal Update Parametrization?



WARMUP: MLP

Standard Parametrization (SP)

u-Parametrization (uP)

Training Loss
o = = ™~
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n = width, d;;, = data dimension

F&) =W3Tp(W2Top(WTE +bY) +b?)
with init. W' ~ N(0,Yd,,), W23 ~ N(0,1/2), 6112 =0, LR

initialize W1 ~ N(0,/d;,), W2 ~ N(0,1/n), W3 ~ N(0,1/n2), b112 =0

with SGD learning rates  my1 = 1yt = Mz = N0, Nw2 =10, Nws =10 .

SP / xent

width
256
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2048
— 4096
— 8192
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n = width, d;, = data dimension

WARMUP: MLP

F(&) =W?To(W2 (W' ¢+ ') +1%)
initialize W' ~ N(0,d;,.), W2 ~ N(0,1/n), W3 ~ N(0, Ne 0
with SGD learning rates  ny1 = Mp1 = Mp2 = NN, Nwz = 1,

u-Parametrization (uP)

Correlated during training

> Law of Large Numbers! Why?
Standard Param (SP) - Not Central Limit!

- didn’t think about correlation during training! /\

O =) Wp(-)a  =0(1)

0(1)

0(1) 0(1/n)



1-PARAMETRIZATION IN GENERAL

Input weights & all biases Output weights Hidden weights
Init. Var. 1/fan_in 1/fan_in2 (-1-/1‘}1.11_111) 1/fa.n_in
SGD LR fa,n_out ( 1 ) 1/fan_i n ( 1 ) 1
Adam LR 1 1 / fan_in (1) 1 / fan_in (1)

Note: focus on scaling with fan_in or fan_out; everything else is a tunable constant

For Transformers, also use 1/d instead of 1/\/3 attention, i.e. the attention logit is calculated as
kTq/d instead of kT q/+/d where query q and key k have dimension d.



Which
Hyperparameters
Can Be uTransferred?



Table 1: Hyperparameters That Can Be pTransferred, Not yTransferred, or pTransferred
Across, with a few caveats discussed in Section 5.1. * means empirically validated only on Trans-
formers, while all others additionally have theoretical justification.

pTransferable Not pTransferable pTransferred Across

optimization related, init, regularization width, depth*, batch size*,
parameter multipliers, etc  (dropout, weight decay, etc) training time*, seq length*

- Why not regularization?

- The amount of regularization (for the purpose of controlling overfitting) naturally
depends on both the model size and data size

- so0 we should not expect transfer to work if the parametrization only
depends on model size (width)

- Therefore, if regularization is the bottleneck of performance of a large model,
uP may not help with that

Luckily, for large scale pretraining, we still have too much data so regularization
is not a bottleneck
While transfer across width is justified by theory, we empirically explore transferring
across other scale dimensions like depth, batch size, training time, seq length.

- But without theoretical understanding, we cannot be as confident that these

results hold beyond the reasonable scales and the problem settings we did
experiments in



Verifying Transfer Across Width
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What if We Change Width Ratio?

Transformer on IWSLT14 De-En
(Varying dsm)
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Figure 12: Learning rate landscape in pP is stable even if we vary d¢ ¢, by a factor of 32, fixing
dmodel-



You Can Vary Both d;.,; and n;,.,4

UP - Fixing dpeag While varying dpoger @and Npeaq

o

o
Ul
o

. 5.0 6
w55 Width
3 256 4.5
4.5
o 5.0 512
= : 4.0 5
c 45 — 1024 ‘
E 2 —— 2048 . 4.0
4.0 —— 4096 ' 4
— 8192 3.5
3.5 3.0
-14 -12 -10 -5 0 5 10 15 -10 0 10 -5.0 =25 0.0 2.5
|092f1 IOgZ“output Inga’attn IOQZU

Figure 13: pTransfer across width when we fiX dpeqq and vary do,oder and Npead. Qoutputs Cattn are
multipliers for output and key weights, and ¢ is initialization standard deviation.



WIDER IS BETTER THROUGHOUT TRAINING

uP LR=0.001 SP LR=0.00025 SP LR=0.001

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Training Step Training Step Training Step

Training Loss
[ NoWw =Y wm o @ [{=]

Figure 9: Wider is always better in training loss under pP, but not in SP, given the same HP.
Learning curves for P and SP with different learning rates, aggregated over 5 seeds. (Left) Wider
1P models always achieve better training loss at any time in training. (Middle) If using a small
learning rate, SP models can appear to do so up to some large width, at which point the pattern fails
(at width 2048 in our plot). (Right) If using a large learning rate, SP model can do worse with width;
here the SP model is identical to the P model in (Left) at width 128.



EXPLORING EMPIRICAL TRANSFER ACROSS DEPTH
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EXPLORING EMPIRICAL TRANSFER ACROSS OTHER DIMENSIONS
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EXPLORING EMPIRICAL TRANSFER ACROSS OTHER DIMENSIONS
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Empirical Efficacy of uTransfer



CAREFUL VALIDATION ON MODELS OF INCREASING SCALE

Transformer
IWSLT14




Transformer on IWSLT14 De-En

@ Standard Parametrization

1.2

10

Training Loss

64
128

@ uP + uTransfer

256

Val. BLEU Percentiles

512 |7, Setup
—— 1024
— 2048 fairseq default

Total Compute  #Samples 25 50 75 100
- - - - - 35.40
Tuning on 1x Ix 5 33.62 35.00 3535 3545
Naive transfer from 0.25x Ix 64 training diverged
Transfer from (.25x Ix 64 35.27 3533 3545 3553

—=17.5 —=15.0 —12.5 —10:0 —7:5
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Performance-Compute Pareto Frontier

uTransfer Dominates Conventional HP Tuning
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IWSLT Transformer is still fairly small --- efficiency only goes up with model scale!



CAREFUL VALIDATION ON MODELS OF INCREASING SCALE

Transformer
IWSLT14




CAREFUL VALIDATION ON MODELS OF INCREASING SCALE

BERT



Tuning BERT with uTransfer

Step 1: v Tune once, use for a family of models
Parameterize BERT in uP v" Only run the large models once
Step 2.

Tune hyperparameters on BERTswmaLL via random search

(256 combinations), training only for 10% of tokens The total tuning cost is equivalent to 1

Step 3: full training run of BERT-large
Copy the best hyperparameter combination to BERTsase

and BERTarce

Model Method Model Speedup  Total Speedup Testloss MNLI (m/mm) QQP

BERTpqse  Megatron Default Ix 1x 1.995 84.2/84.2 90.6
BERTyqse Naive Transfer 4x 40x training diverged
BERTqse pTransfer (Ours) 4x 40x 1.970 84.3/84.8 90.8
BERT4rqe Megatron Default 1x Ix 1.731 86.3/86.2 90.9
BERT 4rge Naive Transfer 22x 220x training diverged

BERT4rge  pTransfer (Ours) 22x 220x 1.683 87.0/86.5 914




CAREFUL VALIDATION ON MODELS OF INCREASING SCALE

BERT



CAREFUL VALIDATION ON MODELS OF INCREASING SCALE

GPT3




OpenAl GPT-3 Family + uP

Final validation loss

Hyperparameter Optimum is Stable
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OpenAl GPT-3 6.7B + uTransfer

Language Modeling (Zero-shot) NLU Tasks (Zero-shot)
. Lower is Better Higher is Better
mmm GPT-3 6.7B + uP 80 mmm GPT-3 6.7B + uP
mm GPT-3 6.7B 21.74 73.49 mm GPT-3 6.7B
7199 70.90 R e
20.51 : : -
59.92
60 56.30
>15 - 50 50.92
% 12.99 ®
[ 11.39 3 40
9 <
& 10
20
5
II -
0 0
PTB Wikitext 103 LM1B HellaSwag LAMBADA SQUADvV2

Total tuning compute budget is only 7% of training budget!!!



Theoretical Foundation



WHAT IS A PARAMETRIZATION?

Input weights & all biases Output weights Hidden weights
Init. Var. ? ? ?
SGD LR ? ? ?
Adam LR ? ? ?

e Tells you how to scale HP when model size changes
* “half learning rate when width doubles”
* Doesn'’t tell you how to set specific values of HP at particular model sizes
* “use learning rate 1e-3 at width 1024”
* For any fixed model size, all parametrizations are equivalent up to tunable HP
* Parametrization gives a way for expressing hyperparameters, just like a
basis gives a way to express vectors in a vector space
e A priori, there is no canonical parametrization, just like a priori there is no

canonical basis in a vector space



EACH PARAMETRIZATION CORRESPONDS TO A co-WIDTH LIMIT

TK

parametrizations

00 « UIpIM

co-width dynamics

“The” Feature Learning Limit



OPTIMAL SCALING THESIS

Verify empirically Verify theoretically
HP Transfer Maximal Limit
A parametrization preserves HP € = |ts limit maximizes feature learning
optimum across model sizes (without blowing up)

This is a thesis for any notion of model size: width, depth, #experts, etc



OPTIMAL SCALING THESIS
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“PROVING” OPTIMAL SCALING THESIS FOR WIDTH




Dynamical Dichotomy Theorem

A Caricature of
Space of Parametrizations

Maximal

Update Mean Field
when depth=1 « Feature learning
Training blows u > . .
g P Unstable v * Function evolution cannot
or

- - be described purely in the
Training stuck at init ————, 14y / be deso Spacg y

Kernel

Standard
(1/width)

* Function evolution described
by functional equation for
some kernel K Standard Neural
fte1 — ft = —nKL(ft) LR = 0(1) Tangent
* No feature learning



Obviously unstable or trivial parametrizations won’t work
 E.g., optimal learning rate will converge to O or diverge.
Kernel regime parametrizations have trivial performance on
pretraining tasks
 E.g., NTK performs trivially on Word2vec; see TP4
Nonmaximal feature learning limits differ from uP’s (maximal)
limit only in that some parameters are stuck at init, ignoring
the learning rate
e But in finite networks, for such parameters, learning rate
obviously has nontrivial effect --- so there’s no way we
can expect transfer
The only parametrization left is uP

“PROOF” OF OPTIMAL SCALING THESIS FOR WIDTH

A Caricature of
Space of Parametrizations

Maximal
Update Mean Field

ours when depth=1
Unstable SR

or
Trivial

Standard
LR = 0(1/width)

o
Standard Neural

LR =0(1) Tangent



TENSOR PROGRAMS




WHAT IS A TENSOR PROGRAM?

* A computation composed of 1) matrix multiplication and 2)
coordinatewise nonlinearities

-~

Key Insight 1
Church-Turing Thesis for Deep Learning

Any “useful” deep learning computation can be
expressed as a Tensor Program.



-~

Key Insight 2
co-Width Limit for Any Tensor Program

One can prove a Master Theorem that reduces the
calculation of co-width limit to a set of mechanical
calculations

Autograd <« » gradients

Master Theorem < » oo-width limit



SGD Training Progress
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Take width — oo Limit via Tensor Programs

NNGP NTK Feature Learning Limit

Prior works This work Q



THE TENSOR PROGRAMS SERIES

Practical
Usefulness N
N Start N Start N OpenAl N
@) . O : O . O
S working on B working N joins TP5 N
TP4 on TPS
° | ° ° | ° o ° | ° | ° o>
I I I I
Start TPO TP1 TP2 TP3 P4 TP5 TP6?
working s
on TP | T

Building the theoretical foundation of TP

Introduces uP and the
feature learning limit

Introduces uTransfer



CONCLUSION




LOOKING FORWARD: THE THEORY OF EVERYTHING

= uP solves the transfer problem for width in a principled way. Can we do it for all other compute hyperparameters?
= Ex: depth, #experts, training time, sequence length
= Naive transfer seems to work OK empirically, but as we go to larger scales, likely they will break down
= Verify the Optimal Scaling Thesis

= This is akin to the search for the Theory of Everything in physics

= The different scale hyperparameters of a neural network are like the different fundamental forces of nature

= We look for a theory that tells us how to scale every aspect of a model together, just like physicists look for a GUT unifying all
fundamental forces of nature



Pytorch library for uP




