

Explore with a small model

Model fails to train when scaled up

with the same hyperparameters

An Example of

What This Work Allows You To Do

Before After

Enter Maximal Update Parametrization, abbreviated 𝜇P

Note: focus on scaling with fan_in or fan_out; everything else is a tunable constant

A principled way of scaling initialization and learning rate with width

Key Property of 𝜇P: Hyperparameter Stability

Increasing width

Hyperparameter

Tr
a

in
in

g
 P

e
rf

o
rm

a
n

c
e

Maximal Update Parametrization (𝜇P)

Increasing width

Hyperparameter

Tr
a

in
in

g
 P

e
rf

o
rm

a
n

c
e

Standard Parametrization

Key Property of 𝜇P: Hyperparameter Stability

Transformer on WikiText-2

Trained by Adam

𝜇Transfer: Zero-Shot Hyperparameter Transfer

𝜇Transfer

You don’t need to tune the

small model if you don’t

want to!

--- You can 𝜇Transfer any

existing set of

hyperparameters you like

from a small model to a

large model!

“Transfer” = optimal hyperparameter remains stable with model size

Prohibitively expensive for large models

CAREFUL VALIDATION ON MODELS OF INCREASING SCALE

MLP

CIFAR10

Transformer

Wikitext2

Transformer

IWSLT14

BERT

GPT3

WideResNet-50

Imagenet

Transformer

WMT14

PRACTICAL BENEFITS OF 𝜇P

 Preserves hyperparameter optimum across width

 Allows zero-shot hyperparameter transfer

 Efficient tuning

 Can tune enormous models only on a single GPU

 Very fast

 The only method for tuning large models

 Altogether enable more reliable scaling-up of neural networks

WHAT DO THESE HAVE IN COMMON?

Manhattan Project Space Program
Large pretrained language/vision models

• Impressive achievements of humankind

• Each empirical test is very expensive

• Require extensive theoretical calculation first before launching any empirical test

How to train large models reliably and optimally?

ECONOMY OF INSIGHTS AT SCALE

problem scale

Cost of insight

Empirical Insight

Theoretical Insight

Large Scale

Pretraining

growing larger

CIFAR10 Space

Program

“principled ways of

doing things”

𝜇P

What is Maximal Update Parametrization?

WARMUP: MLP

Standard Parametrization (SP)

𝜇-Parametrization (𝜇P)

LR 𝜂

𝑛 = 𝑤𝑖𝑑𝑡ℎ, 𝑑𝑖𝑛 = 𝑑𝑎𝑡𝑎 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛

WARMUP: MLP

𝜇-Parametrization (𝜇P)

𝑛 = 𝑤𝑖𝑑𝑡ℎ, 𝑑𝑖𝑛 = 𝑑𝑎𝑡𝑎 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛

Why?

𝑓 𝜉 = ෍

𝛼=1

𝑛

𝑊𝛼
3𝜙 ⋯ 𝛼

Correlated during training

→ Law of Large Numbers!

→ Not Central Limit!

Θ(1)

Θ(1/𝑛)

= Θ(1)𝑓 𝜉 = ෍

𝛼=1

𝑛

𝑊𝛼
3𝜙 ⋯ 𝛼

Θ(1)

Θ(1)

= Θ(𝑛)

Standard Param (SP)
- didn’t think about correlation during training!

𝜇-PARAMETRIZATION IN GENERAL

Note: focus on scaling with fan_in or fan_out; everything else is a tunable constant

For Transformers, also use 1/𝑑 instead of 1/ 𝑑 attention, i.e. the attention logit is calculated as

𝑘⊤𝑞/𝑑 instead of 𝑘⊤𝑞/ 𝑑 where query 𝑞 and key 𝑘 have dimension 𝑑.

Which

Hyperparameters

Can Be 𝜇Transferred?

- Why not regularization?

- The amount of regularization (for the purpose of controlling overfitting) naturally

depends on both the model size and data size

- so we should not expect transfer to work if the parametrization only

depends on model size (width)

- Therefore, if regularization is the bottleneck of performance of a large model,

𝜇P may not help with that

- Luckily, for large scale pretraining, we still have too much data so regularization

is not a bottleneck

- While transfer across width is justified by theory, we empirically explore transferring

across other scale dimensions like depth, batch size, training time, seq length.

- But without theoretical understanding, we cannot be as confident that these

results hold beyond the reasonable scales and the problem settings we did

experiments in

Verifying Transfer Across Width

(XEnt Temp)

postLN

Transformer

preLN

Transformer

What if We Change Width Ratio?

You Can Vary Both 𝑑ℎ𝑒𝑎𝑑 and 𝑛ℎ𝑒𝑎𝑑

WIDER IS BETTER THROUGHOUT TRAINING

EXPLORING EMPIRICAL TRANSFER ACROSS DEPTH

preLN

Transformer

postLN

Transformer
Doesn’t work

EXPLORING EMPIRICAL TRANSFER ACROSS OTHER DIMENSIONS

Batch Size

Seq Len

Training Time

preLN

Transformer

EXPLORING EMPIRICAL TRANSFER ACROSS OTHER DIMENSIONS

Batch Size

Seq Len

Training Time

postLN

Transformer

Empirical Efficacy of 𝜇Transfer

CAREFUL VALIDATION ON MODELS OF INCREASING SCALE

MLP

CIFAR10

Transformer

Wikitext2

Transformer

IWSLT14

BERT

GPT3

Transformer on IWSLT14 De-En

Standard Parametrization 𝜇P + 𝜇Transfer

Performance-Compute Pareto Frontier

𝜇Transfer Dominates Conventional HP Tuning

IWSLT Transformer is still fairly small --- efficiency only goes up with model scale!

CAREFUL VALIDATION ON MODELS OF INCREASING SCALE

MLP

CIFAR10

Transformer

Wikitext2

Transformer

IWSLT14

BERT

GPT3

CAREFUL VALIDATION ON MODELS OF INCREASING SCALE

MLP

CIFAR10

Transformer

Wikitext2

Transformer

IWSLT14

BERT

GPT3

Step 1:
Parameterize BERT in 𝜇P

Step 2:
Tune hyperparameters on BERTSMALL via random search

(256 combinations), training only for 10% of tokens

Step 3:
Copy the best hyperparameter combination to BERTBASE

and BERTLARGE

✓ Tune once, use for a family of models

✓ Only run the large models once

Tuning BERT with 𝜇Transfer

The total tuning cost is equivalent to 1

full training run of BERT-large

CAREFUL VALIDATION ON MODELS OF INCREASING SCALE

MLP

CIFAR10

Transformer

Wikitext2

Transformer

IWSLT14

BERT

GPT3

CAREFUL VALIDATION ON MODELS OF INCREASING SCALE

MLP

CIFAR10

Transformer

Wikitext2

Transformer

IWSLT14

BERT

GPT3

OpenAI GPT-3 Family + 𝜇P

Hyperparameter Optimum is Stable Wider is Always Better Given the Same HPs

OpenAI GPT-3 6.7B + 𝜇Transfer

Total tuning compute budget is only 7% of training budget!!!

Theoretical Foundation

WHAT IS A PARAMETRIZATION?

• Tells you how to scale HP when model size changes

• “half learning rate when width doubles”

• Doesn’t tell you how to set specific values of HP at particular model sizes

• “use learning rate 1e-3 at width 1024”

• For any fixed model size, all parametrizations are equivalent up to tunable HP

• Parametrization gives a way for expressing hyperparameters, just like a

basis gives a way to express vectors in a vector space

• A priori, there is no canonical parametrization, just like a priori there is no

canonical basis in a vector space

? ? ?

? ? ?

? ? ?

EACH PARAMETRIZATION CORRESPONDS TO A ∞-WIDTH LIMIT

∞-width dynamics

parametrizations

w
id

th
 →

∞

“The” Feature Learning Limit

NTK

NTK

Maximal Update

OPTIMAL SCALING THESIS

Maximal Limit
Its limit maximizes feature learning

(without blowing up)

HP Transfer
A parametrization preserves HP

optimum across model sizes

This is a thesis for any notion of model size: width, depth, #experts, etc

Verify theoreticallyVerify empirically

OPTIMAL SCALING THESIS

“PROVING” OPTIMAL SCALING THESIS FOR WIDTH

Dynamical Dichotomy Theorem
A Caricature of

Space of Parametrizations

Training blows up

Training stuck at init

• Function evolution described

by functional equation for

some kernel 𝐾
𝑓𝑡+1 − 𝑓𝑡 = −𝜂𝐾ℒ′(𝑓𝑡)
• No feature learning

• Feature learning

• Function evolution cannot

be described purely in the

function space

“PROOF” OF OPTIMAL SCALING THESIS FOR WIDTH

A Caricature of

Space of Parametrizations
• Obviously unstable or trivial parametrizations won’t work

• E.g., optimal learning rate will converge to 0 or diverge.

• Kernel regime parametrizations have trivial performance on

pretraining tasks

• E.g., NTK performs trivially on Word2vec; see TP4

• Nonmaximal feature learning limits differ from 𝜇P’s (maximal)

limit only in that some parameters are stuck at init, ignoring

the learning rate

• But in finite networks, for such parameters, learning rate

obviously has nontrivial effect --- so there’s no way we

can expect transfer

• The only parametrization left is 𝜇P

TENSOR PROGRAMS

WHAT IS A TENSOR PROGRAM?

• A computation composed of 1) matrix multiplication and 2)
coordinatewise nonlinearities

Key Insight 1

Church-Turing Thesis for Deep Learning

Any “useful” deep learning computation can be

expressed as a Tensor Program.

Key Insight 2

∞-Width Limit for Any Tensor Program

One can prove a Master Theorem that reduces the

calculation of ∞-width limit to a set of mechanical

calculations

Autograd gradients

Master Theorem ∞-width limit

THE TENSOR PROGRAMS SERIES

2
0

1
9

2
0

2
0

2
0

2
1

2
0

2
2

TP0 TP1 TP2 TP3 TP4Start

working

on TP

TP6?

Building the theoretical foundation of TP

Introduces 𝜇P and the

feature learning limit

TP5

Introduces 𝜇Transfer

Start

working on

TP4

Start

working

on TP5

Practical

Usefulness

OpenAI

joins TP5

CONCLUSION

LOOKING FORWARD: THE THEORY OF EVERYTHING

 𝜇P solves the transfer problem for width in a principled way. Can we do it for all other compute hyperparameters?

 Ex: depth, #experts, training time, sequence length

 Naïve transfer seems to work OK empirically, but as we go to larger scales, likely they will break down

 Verify the Optimal Scaling Thesis

 This is akin to the search for the Theory of Everything in physics

 The different scale hyperparameters of a neural network are like the different fundamental forces of nature

 We look for a theory that tells us how to scale every aspect of a model together, just like physicists look for a GUT unifying all

fundamental forces of nature

Paper Pytorch library for 𝜇P

> pip install mup

> git clone github.com/microsoft/mup

OR

