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WORKHORSE OF MACHINE LEARNING

Stochastic Gradient Descent Machine Learning



IN DEEP LEARNING
Empirical observation: Local (even global) minima with bad 
generalisation error do exist.  

Question: How do gradient-based algorithms manage to avoid 
bad minima with limited number of samples?



STRATEGY

Goal: We need to understand the whole trajectory of gradient-
based algorithms in non-convex high-dimensional problems. 

In practice: Number of samples is limited & constants matter.  

Simplify: Work with synthetic model data as a first step to get 
insight on the behaviour of algorithms. 



SPIKED MATRIX-TENSOR MODEL 

ℒ(x) = ∥xx⊤ − Y∥2
2 + ∥x⨂p − T∥2

2

x, x* ∈ 𝕊N−1

Y = x*(x*)⊤ + 𝒩(0,Δ̃2)
T = (x*)⨂p + 𝒩(0,Δ̃p)

N → ∞

Loss:

where: 

Goal: Find back a vector close to x* by gradient-descent on the loss. 



SPIKED MATRIX-TENSOR MODEL

Signal x* on a sphere, observe a matrix Y and tensor T as: 

Yij =
1

N
x*i x*j + ξij

Ti1…ip =
(p − 1)!

N(p−1)/2
x*i1 …x*ip + ξi1…ip

ξij ∼ 𝒩(0,Δ2)

ξi1,…,ip ∼ 𝒩(0,Δp)

Corresponding Hamiltonian (loss function, log-likelihood)

ℋ(x) = −
1

Δ2 N ∑
i<j

Yijxixj −
(p − 1)!

ΔpN(p−1)/2 ∑
i1<…<ip

Ti1…ipxi1…xip

Planted version of the mixed 2+p spherical spin glass model. 

N

∑
i=1

x2
i = Nspherical constraint:



ESTIMATORS

Bayes-optimal inference = computation of marginals/local 
magnetization of the Boltzmann measure at T=1.   

➡ Langevin algorithm.  

Maximum likelihood inference = computing the ground state. 

➡ Gradient flow. 



PHASE DIAGRAM

Bayes-optimal performance and AMP p=3

meq = mAMP > 0

meq = mAMP = 0

meq > mAMP = 0

Ferromagnet, found by AMP

paramagnet

Ferromagnet, not found by AMP



GRADIENT-BASED ALGORITHMS

·xi(t) = − μ(t)xi(t) −
∂ℋ
∂xi

+ ηi(t)

⟨ηi(t)ηj(t′ )⟩ = 2Tδijδ(t − t′ )
noise

gradient

spherical constraint 
(weight decay) 

T=1 Langevin algorithm: At large time (exponentially) samples 
the posterior measure.  

T=0 Gradient flow. 

What happens at large constant time? 



DYNAMICAL MEAN FIELD THEORY

Mean field theory of glassy dynamics:

The same model without spike: mixed spherical p-spin glass

Proof of this without spike: BenArous, Dembo, Guionnet’06. 



Langevin algorithm (T=1)

Gradient flow (T=0)

N → ∞

Sarao, Biroli, Cammarota, Krzakala, Urbani, LZ’18

DYNAMICAL MEAN FIELD THEORY



LANGEVIN STATE EVOLUTION 
(NUMERICAL SOLUTION)
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github.com/sphinxteam/spiked_matrix-tensor

Δ2 = 0.7



LANGEVIN PHASE DIAGRAM

p=3



p=3

Langevin 
hard

Gradient flow

GRADIENT-FLOW PHASE DIAGRAM



POPULAR “EXPLANATION” 

Trivialisation

Increasing the SNR
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er

gy



COUNTING MINIMA: KAC-RICE

where: 

Annealed entropy of local minima (at m=0 also quenched):

Similar to Ben Arous, 
Mei, Song, Montanari, 

Nica’17; Ros, Ben Arous, 
Biroli, Cammarota’18 for 

spiked tensor model 

Sarao, Krzakala, Urbani, LZ, ICML’19



SPURIOUS MINIMA DO NOT 
NECESSARILY CAUSE GF TO FAIL

p=3
Gradient flow

Landscape trivialisation



WHAT IS GOING ON?

Threshold energy 
in the non-planted 

model (m=0)



TRANSITION RECIPE
Dynamics first goes to the threshold states (replicon condition): 

Condition for instability toward the solution at fixed q:                                 
(derived from both Kac-Rice, and DMFT)  

Leads to the Langevin/gradient-flow transition (conjecture): 

T2

(1 − qth)2
= (p − 1)

(qth)p−2

Δp
+

1
Δ2

1
Δ2

2
= (p − 1)

(1 − TΔ2)p−2

Δp
+

1
Δ2

TΔ2 = 1 − q



ΔGF
2 =

−Δp + Δ2
p + 4(p − 1)Δp

2(p − 1)

GRADIENT-FLOW PHASE DIAGRAM



LANGEVIN PHASE DIAGRAM

ΔLang
2 =

Δ3

2

p=3



LANDSCAPE ANALYSIS

Increasing the SNR
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Trivialisation

Former minima develop a negative slope 
 in the direction of the spike!

Sarao, Biroli, Cammarota, Krzakala, LZ, NeurIPS’19



CONCLUSION ON  
SPIKED MATRIX-TENSOR MODEL

First time we have a closed-form conjecture for the threshold of 
gradient-based algorithms including constants.                                               
Applicable for (simple) neural networks? 

Gradient flow worse than Langevin algorithm, both worse than AMP. 
How can GF & LA be improved to approach the AMP threshold?           

Gradient flow (sometimes) works even when spurious local minima 
are present. Quantified with the Kac-Rice approach.                         
What about stochastic gradient descent? 



TEACHER-NEURAL SETTING

Teacher-network 

data
X

y
labels

w1

w3

teacher-weights

w2
*

*
*

Generates data X, n samples of              
p dimensional data, e.g. random i.i.d. 
Gaussian input vectors.  

Generates weights w*, iid random.        

Generates labels y. 

data
X

y
labels

w1

w3

student-weights

w2

Student-network

Observes X, y.   

The architecture of the network is the 
same as the teacher or different.      

How does the generalisation error 
depend on the number of samples n?



Take random iid Gaussian         and random iid         from         

Create                                             

High-dimensional regime: 

TEACHER-STUDENT PERCEPTRON

Xμi w*i

yμ = sign(
p

∑
i=1

Xμiw*i )
Pw

p → ∞n → ∞
α ≡ n/p = Θ(1)

data
X

y
labels

w
weights

data
weights

Gardner, Derrida’89 1989

p dimensions                     
n samples 



Broad range of applications in signal processing and imaging.  

Teacher-student setting with teacher having no hidden units, 
teacher’s activation function is absolute value. 

PHASE RETRIEVAL 

yμ =
p

∑
i=1

Xμiw*i

w*i ∼ 𝒩(0,1)Xμi ∼ 𝒩(0,1/p) μ = 1,…, n
i = 1,…, p

Phase retrieval: Regression from training data {Xμ, yμ}n
μ=1



PHASE RETRIEVAL: OPTIMAL SOLUTION

hardbest achievable error
best known algorithm

α =
n
p

αIT = 1

αAMP = 1.13

# of samples need for perfect generalisation for any algorithm. 

# of samples need for perfect generalisation for approximate message 
passing algorithm (conjectured optimal among polynomial ones). 

Barbier, FK, Macris, Miolane, LZ, arXiv:1708.03395, COLT’18, PNAS’19 



GRADIENT DESCENT FOR PHASE RETRIEVAL 

ℒ({wi}p
i=1) =

n

∑
μ=1

[y2
μ − (

p

∑
i=1

Xμiwi)2]
2

yμ =
p

∑
i=1

Xμiw*i

Loss function: 

Initialisation:

Gradient flow: ·wi(t) = − ∂wi
ℒ({wj(t)}p

j=1) + μ(t)wi(t)

wi(0) ∼ 𝒩(0,1)

where

ensuring |w |2
2 = p



α =
n
p

1 1.13

IT AMP

Chen, Chi, Fan, Ma’19

poly(log p)

PERFORMANCE OF GRADIENT DESCENT

?

Barbier, FK, Macris, Miolane, LZ, arXiv:1708.03395, COLT’18, PNAS’19 

How many samples needed for perfect generalization? 



GRADIENT DESCENT NUMERICALLY
Sarao Mannelli, Biroli, Cammarota, Krzakala, LZ, 2006.06997.  

N=p



TOWARDS A THEORY

Lesson from the spiked 2+p spin model: GF first goes to the 
threshold states and a BBP-like transition in the Hessian 
then drives success v.s. failure. 

True also in phase retrieval.  

Sarao Mannelli, Biroli, Cammarota, Krzakala, LZ, 2006.06997.  



Random matrix results (BBP-like) results from (Lu, Li’19) + 
marginality of threshold states = expression for  

One-step replica symmetry breaking theory provides an 
approximation of 

αGD[P( ̂y, y)]

P1RSB( ̂y, y)

TOWARDS A THEORY
Sarao Mannelli, Biroli, Cammarota, Krzakala, LZ, 2006.06997.  



Random matrix results (BBP-like) results from (Lu, Li’19) + 
marginality of threshold states = expression for  

One-step replica symmetry breaking theory provides an 
approximation of  

Leading to 

αGD[P( ̂y, y)]

P1RSB( ̂y, y)

α1RSB
GD ≈ 13.8

TOWARDS A THEORY
Sarao Mannelli, Biroli, Cammarota, Krzakala, LZ, 2006.06997.  



α =
n
p

1 1.13

IT AMP

Chen, Chi, Fan, Ma’19

poly(log p)

PERFORMANCE OF GRADIENT DESCENT

13.8

GD/1RSB

~7

GD numerics

Only  samples seem to be needed.O(p)

Sarao Mannelli, Biroli, Cammarota, Krzakala, LZ, 2006.06997.  

How many samples needed for perfect generalization? 

?

Precise constant?  



α =
n
p

1 1.13

IT AMP

Chen, Chi, Fan, Ma’19

poly(log p)

PERFORMANCE OF GRADIENT DESCENT

13.8

GD/1RSB

~7

GD numerics

?
Closing the gap between GD and AMP? 



CONCLUSION ON  
SPIKED MATRIX-TENSOR MODEL

First time we have a closed-form conjecture for the threshold of 
gradient-based algorithms including constants.                                               
Applicable for (simple) neural networks? 

Gradient flow worse than Langevin algorithm, both worse than AMP. 
How can GF & LA be improved to approach the AMP threshold?           

Gradient flow (sometimes) works even when spurious local minima 
are present. Quantified with the Kac-Rice approach.                         
What about stochastic gradient descent? 



OVER-PARAMETRISATION 
& 

GRADIENT DESCENT



Teacher-student setting with teacher having no hidden units, 
teacher’s activation function is absolute value. 

PHASE RETRIEVAL 

yμ =
p

∑
i=1

Xμiw*i

w*i ∼ 𝒩(0,1)Xμi ∼ 𝒩(0,1/p) μ = 1,…, n
i = 1,…, p

Phase retrieval: Regression from training data {Xμ, yμ}n
μ=1



GRADIENT DESCENT FOR PHASE RETRIEVAL 

ℒ({wia}p,m
i,a=1) =

n

∑
μ=1

[y2
μ −

1
m

m

∑
a=1

(
p

∑
i=1

Xμiwia)2]
2

yμ =
p

∑
i=1

Xμiw*i

Loss function: 

Initialisation:

Gradient flow: ·wia(t) = − ∂wia
ℒ({wjb(t)}p,m

j,b=1)
wia(0) ∼ 𝒩(0,1)

whereX
y

w

Wide (m>p) over-parametrised 
two-layer neural network 



OVER-PARAMETRISED LANDSPACE
Sarao Mannelli, Vanden-Eijnden, LZ, 2006.15459

p=d



GD FOR OVER-PARAMETRISED PHASE RETRIEVAL 
Sarao Mannelli, Vanden-Eijnden, LZ, 2006.15459

p=d



α =
n
p

1 1.13

IT AMP

Chen, Chi, Fan, Ma’19
poly(log p)

PERFORMANCE OF GRADIENT DESCENT

13.8

GD/1RSB

~7

GD numerics

2

GD in an over-
parametrised network

Sarao Mannelli, Vanden-Eijnden, LZ, 2006.15459

Over-parametrised neural network needs fewer samples to learn 



CONCLUSION ON  
SPIKED MATRIX-TENSOR MODEL

First time we have a closed-form conjecture for the threshold of 
gradient-based algorithms including constants.                                               
Applicable for (simple) neural networks? 

Gradient flow worse than Langevin algorithm, both worse than AMP. 
How can GF & LA be improved to approach the AMP threshold?           

Gradient flow (sometimes) works even when spurious local minima 
are present. Quantified with the Kac-Rice approach.                         
What about stochastic gradient descent? 



Online SGD = each iteration uses samples never used before. 
Minimises directly the population loss, no notion of 
generalisation gap, i.e. train and test error are the same (in 
physics: Saad, Solla‘95; Saad‘09; Goldt, Advani, Saxe, Krzakala, Zdeborová’19)  

In practice: multi-pass SGD, reuses each sample many times. 
Much less existing theory … 

STOCHASTIC GRADIENT DESCENT

ℒ({wi}p
i=1) =

n

∑
μ=1

ℓ(yμ, Xμ, {wi}p
i=1) + λ∥w∥2

2

wj(t + η) = wj(t) − η[λwj(t) + ∂wj
ℓ(yμ, Xμ, w(t))]



CONTINUOUS TIME LIMIT? 

wj (t + η) = wj (t) − η[λwj (t) +
n

∑
μ=1

sμ(t) ∂wj
ℓ(yμ, Xμ, w(t))]

batch size: bn, 0 ≤ b ≤ 1  at fixed  p, n → ∞ α = n/p, b, τ

stochastic gradient flow, η → 0

·wj (t) = − η[λwj (t) +
n

∑
μ=1

sμ(t) ∂wj
ℓ(yμ, Xμ, w(t))] wj(0) ∼ 𝒩(0,R)



MODEL FOR DATA



DYNAMICAL MEAN-FIELD THEORY 
(Mézard, Parisi, Virasoro, ‘87, Georges, Kotliar, Krauth, Rozenberg, ‘96)

We generalize to the stochastic GD and data model with tests error well defined.  



DYNAMICAL MEAN-FIELD THEORY



DYNAMICAL MEAN-FIELD THEORY



2-clusters

b = 0.3, α = 2.0, Δ = 0.5, λ = 0, η = 0.2, R = 0.01

Small persistence time  
SGD 

SGD-inspired 
discretisation is ad hoc, yet 

agrees with simulations

→

DMFT FOLLOWS THE WHOLE TRAJECTORY



DMFT FOLLOWS THE WHOLE TRAJECTORY

2-clusters, full-batch

b = 1, α = 2.0, Δ = 0.5, λ = 0, η = 0.2

R = variance at 
initialization 

For 2-clusters R=0 is 
optimal after one iteration.  



3-clusters

The finite batch size acts as an effective regularisation. 

DMFT FOLLOWS THE WHOLE TRAJECTORY

α = 3.0, Δ = 0.05, L = 0.7, R = 0.01, η = 0.2

λ = 0.1 b = 1



CONCLUSION

DMFT tracks the trajectory of GD/SGD for a range of data 
models.  

Extensions: 

Deduce more insights from the DMFT equations (optimal 
hyper-parameter setting, nature of noise …) 

Other data models, networks with hidden units, variants of 
GD/SGD.  

Rigorous proof of the equations/thresholds. 
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