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WORKHORSE OF MACHINE LEARNING

Stochastic Gradient Descent Machine Learning




IN DEEP LEARNING

o Empirical observation: Local (even global) minima with bad
generalisation error do exist.

Bad Global Minima Exist and SGD Can Reach Them

Shengchao Liu, Dimitris Papailiopoulos Dimitris Achlioptas
University of Wisconsin—-Madison University of California, Santa Cruz

Abstract

Several recent works have aimed to explain why severely overparameterized models,
generalize well when trained by Stochastic Gradient Descent (SGD). The emergent
consensus explanation has two parts: the first is that there are “no bad local
minima”, while the second is that SGD performs implicit regularization by having
a bias towards low complexity models. We revisit both of these ideas in the context
of image classification with common deep neural network architectures. Our first
finding is that there exist bad global minima, i.e., models that fit the training set
perfectly, yet have poor generalization. Our second finding is that given only
unlabeled training data, we can easily construct initializations that will cause SGD
to quickly converge to such bad global minima. For example, on CIFAR, CINIC10,
and (Restricted) ImageNet, this can be achieved by starting SGD at a model derived
by fitting random labels on the training data: while subsequent SGD training (with
the correct labels) will reach zero training error, the resulting model will exhibit
a test accuracy degradation of up to 40% compared to training from a random
initialization. Finally, we show that regularization seems to provide SGD with an
escape route: once heuristics such as data augmentation are used, starting from a
complex model (adversarial initialization) has no effect on the test accuracy.

e Question: How do gradient-based algorithms manage to avoid
bad minima with limited number of samples?




STRATEGY

e Goal: We need to understand the whole trajectory of gradient-
based algorithms in non-convex high-dimensional problems.

e In practice: Number of samples is limited & constants matter.

e Simplify: Work with synthetic model data as a first step to get
insight on the behaviour of algorithms.




SPIKED MATRIX-TENSOR MODEL

L) = |lxx" = Y])2 + [|x®P — 1|3

where: Y = x*(x*)T + 4 (0952)
T = (x*)QP + /V(O,Ap)

L eSS N - o

Goal: Find back a vector close to x* by gradient-descent on the loss.




SPIKED MATRIX-TENSOR MODEL

e Signal x* on a sphere, observe a matrix Y and tensor T as:
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e Corresponding Hamiltonian (loss function, log-likelihood)
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Spherlcal constraint: z:,x =

Planted version of the mixed 2+p spherical spin glass model.




ESTIMATORS

Bayes-optimal inference = computation of marginals/local
i magnetlzatlon of the Boltzmann measure at T 1. f.f

- Langevm algorlthm

Maximum likelihood inference = computing the ground state.

= Gradient flow.




PHASE DIAGRAM

Bayes-optimal performance and AMP
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GRADIENT-BASED ALGORITHMS

spherical constraint ((On(2)) = 2T6,6(t — 1)
(weight decay) noise

b OH 4
X(1) = — p()x,(1) p - 171
.X'

l

s

gradient

e T=1 Langevin algorithm: At large time (exponentially) samples
the posterior measure.

e T=0 Gradient tlow.

i What happens at large constant time? }




DYNAMICAL MEAN FIELD THEORY

The same model without spike: mixed spherical p-spin glass

Mean field theory of glassy dynamics:

VOLUME 71, NUMBER | PHYSICAL REVIEW LETTERS 5 JuLy 1993

Analytical Solution of the Off-Equilibrium Dynamics
of a Long-Range Spin-Glass Model

L. F. Cugliandolo and J. Kurchan
Dipartimento di Fisica, Universita di Roma, La Sapienza, I-00185 Roma, Italy
and Istituto Nazionale di Fisica Nucleare, Sezione di Roma I, Roma, Italy
(Received 8 March 1993)

We study the nonequilibrium relaxation of the spherical spin-glass model with p-spin interactions
in the N — oo limit. We analytically solve the asymptotics of the magnetization and the correlation
and response functions for long but finite times. Even in the thermodynamic limit the system
exhibits “weak” (as well as “true”) ergodicity breaking and aging effects. We determine a functional
Parisi-like order parameter P;(q) which plays a similar role for the dynamics to that played by the
usual function for the statics.

PACS numbers: 75.10.Nr, 02.50.-r, 05.40.+j, 64.60.Cn

Proof of this without spike: BenArous, Dembo, Guionnet’06.




DYNAMICAL MEAN FIELD THEORY

Sarao, Biroli, Cammarota, Krzakala, Urbani, LZ’18
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LANGEVIN STATE EVOLUTION
(NUMERICAL SOLUTION)
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LANGEVIN PHASE DIAGRAM
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GRADIENT-FLOW PHASE DIAGRAM

» *_ Gradient flow

mpossibl
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POPULAR “EXPLANATION"™

V

Trivialisation

Increasing the SNR I
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COUNTING MINIMA: KAC-RICE

Sarao, Krzakala, Urbani, LZ, ICML’19

Annealed entropy of local minima (at m=0 also quenched):
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YN0, Ap (m, €2, €p) = 5 log A1 n A1 T 9 log(1 —m?) Similar to Ben Arous,
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Mei, Song, Montanari,
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Biroli, Cammarota’18 for
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SPURIOUS MINIMA DO NOT
NECESSARILY CAUSE GF TO FAIL




WHAT IS GOING ON?
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TRANSITION RECIPE

Dynamics first goes to the threshold states (replicon condition):

T2 thyp—2 1
=D 1)(q e

(1 = qth)Z Ap AZ

Condition for instability toward the solution at fixed q:
(derived from both Kac-Rice, and DMFT)

Leads to the Langevin/gradient-flow transition (conjecture):
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GRADIENT-FLOW PHASE DIAGRAM




LANGEVIN PHASE DIAGRAM
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LANDSCAPE ANALYSIS

Sarao, Biroli, Cammarota, Krzakala, LZ, NeurIPS’19

Former minima develop a negative slope

/ in the direction of the spike!
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CONCLUSION ON
SPIKED MATRIX-TENSOR MODEL

e First time we have a closed-form conjecture for the threshold of
gradlent -based algorlthms including ¢ stants

e Gradient flow worse than Langevin algorithm, both worse than AMP.
How can GF & LA be improved to approach the AMP threshold?

o Gradient flow (sometimes) works even when spurious local minima
are present. Quantified with the Kac-Rice approach.
What about stochastic gradient descent?




TEACHER-NEURAL SETTING

Teacher-network

Generates data X, n samples of
p dimensional data, e.g. random i.i.d.
Gaussian input vectors.

Generates weights w*, iid random.

Generates labels y.

teacher-weights

data /
X o o l \
: W§ labels

+*%
Wa oy

Student-network

Observes X, y.

The architecture of the network is the
same as the teacher or different.

How does the generalisation error
depend on the number of samples n?

student-weights

data /
T o
: Wo labels

W N




TEACHER-STUDENT PERCEPTRON

J. Phys. A: Math. Gen. 22 (1989) 1983-1994. Printed in the UK

1989

Three unfinished works on the optimal storage capacity

of networks data

X weights
E Gardner and B Derrida W

The Institute for Advanced Studies, The Hebrew University of Jerusalem, Jerusalem, Israel l b 1
and Service de Physique Théorique de Saclayt, F-91191 Gif-sur-Yvette Cedex, France apels

Received 13 December 1988

Abstract. The optimal storage properties of three different neural network models are
studied. For two of these models the architecture of the network is a perceptron with =J
interactions, whereas for the third model the output can be an arbitrary function of the
inputs. Analytic bounds and numerical estimates of the optimal capacities and of the
minimal fraction of errors are obtained for the first two models. The third model can be
soived exactly and the exact solution is compared to the bounds and to the results of
numerical simulations used for the two other models,

 Take random iid Gaussian X, and random iid w* from P,

4
o Create y, = sign Zmei*
)

* High-dimensional regime: n - 00 p — p dimensions

a=nl/p=0() n samples




PHASE RETRIEVAL

e Broad range of applications in signal processing and imaging.

e Teacher-student setting with teacher having no hidden units,
teacher’s activation function is absolute value.

X N(0,1/p) wl.* ~ N(0,1)

p
. o
yﬂ_ szWi
i=1

Phase retrieval: Regression from training data {X,,y,} _,




PHASE RETRIEVAL: OPTIMAL SOLUTION

Barbier, FK, Macris, Miolane, LZ, arXiv:1708.03395, COLT 18, PNAS’19
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GRADIENT DESCENT FOR PHASE RETRIEVAL

n

Loss function: ZL{w;}t_ ) = Z [ | X W)z]z

HlL 1
p=1

P
where y, = |) X,w?
i~ I

Gradient flow: wi) = —0,Z ({Wj(f) }le) + u(@®)wi(?)

T

ensuring |w |§ —p

Initialisation: w;(0) ~ A#(0,1)




PERFORMANCE OF GRADIENT DESCENT

How many samples needed for perfect generalization?

Chen, Chi, Fan, Ma’19
poly(log p)




GRADIENT DESCENT NUMERICALLY

Sarao Mannelli, Biroli, Cammarota, Krzakala, LZ, 2006.06997.
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TOWARDS A THEORY

Sarao Mannelli, Biroli, Cammarota, Krzakala, LZ, 2006.06997.

e Lesson from the spiked 2+p spin model: GF first goes to the
threshold states and a BBP-like transition in the Hessian
then drives success v.s. failure.

e True also in phase retrieval.

threshold energy
— a=06.0
a=12.0

250 500 750 1000 1250 1500 1750 2000
iteration iteration




TOWARDS A THEORY

Sarao Mannelli, Biroli, Cammarota, Krzakala, LZ, 2006.06997.

e Random matrix results (BBP-like) results from (Lu, Li'1g9) +
marginality of threshold states = expression for agp [P(y, y)]

® One-step replica symmetry breaking theory provides an
approximation of Pircg(V,y)

--- 1RSB
—}— simulations

20 25 30




TOWARDS A THEORY

Sarao Mannelli, Biroli, Cammarota, Krzakala, LZ, 2006.06997.

e Random matrix results (BBP-like) results from (Lu, Li'19) +
marginality of threshold states = expression for agp [P()A/, y)]

e One-step replica symmetry breaking theory provides an
approximation of P psg(V, y)

e Leading to




PERFORMANCE OF GRADIENT DESCENT

Sarao Mannelli, Biroli, Cammarota, Krzakala, LZ, 2006.06997.

How many samples needed for perfect generalization?

?
e
1 1193 ~7 13.8  poly(logp)
-_tt

IT AMP GD numerics GD/1RSB

Chen, Chi, Fan, Ma’19

Gl ==

n
P

Only O(p) samples seem to be needed. Precise constant?




PERFORMANCE OF GRADIENT DESCENT

Closing the gap between GD and AMP?

Chen, Chi, Fan, Ma’19
13.8  poly(logp)

GD numerics GD/1RSB




CONCLUSION ON
SPIKED MATRIX-TENSOR MODEL

e First time we have a closed-form conjecture for the threshold of
gradient-based algorithms including constants.
Applicable for (simple) neural networks?

e Gradlentow worse than Langevin algorithm, both worse than AMP.

o Gradient flow (sometimes) works even when spurious local minima
are present. Quantified with the Kac-Rice approach.
What about stochastic gradient descent?




OVER-PARAMETRISATION

&
GRADIENT DESCENT




PHASE RETRIEVAL

e Teacher-student setting with teacher having no hidden units,
teacher’s activation function is absolute value.

X~ 440 1ip) e o 40 1)

p
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Phase retrieval: Regression from training data {X,,y,} _,




GRADIENT DESCENT FOR PHASE RETRIEVAL

Loss function: 2w, } " Z [

Id= 1
p=1

. Wide (m>p) over-parametrised |
ti two-layer neural network |

Gradient flow: W, () = -0, Z <{ Wip(H) } e 1)
Initialisation:  w;,(0) ~ A (0,1)




OVER-PARAMETRISED LANDSPACE

Sarao Mannelli, Vanden-Eijnden, LZ, 2006.15459

Theorem 3.1 (Single unit teacher). Consider a teacher with m* =1 and a student with m > d hidden
units respectively, so that A* has rank 1 and A has full rank. Given a data set {xy}}_, with each x}, € R¢
drawn independently from a standard Gaussian, denote by M,, 4 the set of minimizer of the empirical loss
constructed with {xy}}_, over symmetric positive semidefinite matrices A, i.e.

Mpda= {A = AT positive semidefinite such that E,.(A) = 0} . (10)
Set n = |ad]| for « > 1 and let d - co. Then

lim P (Mjaqa # {4°}) =1 ifa€[0,2 (11)

whereas

lim P (M agpa={4"}) >0  ifae(20) (12)

d—oo

1 = *k 1 m* Xk *k
At) = - Zwi(t)wf(t), A" = - sz’ (w))",




GD FOR OVER-PARAMETRISED PHASE RETRIEVAL

Sarao Mannelli, Vanden-Eijnden, LZ, 2006.15459

Theorem 4.1. Let {w;(t)}*, be the solution to (3) for the initial data {w;(0)}*,. Assume that m > d
and each w;(0) is drawn independently from a distribution that is absolutely continuous with respect to the

Lebesque measure on R%. Then

1 m
~ ng"’('w;’o)T as t— oo (15)
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and A s a global minimizer of the empirical loss, i.e.
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PERFORMANCE OF GRADIENT DESCENT

Sarao Mannelli, Vanden-Eijnden, LZ, 2006.15459
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Chen, Chi, Fan, Ma’19
1 113 ~7 13.8  poly(logp)

IT AMP GD in an over- GD numerics GD/1RSB o — n
parametrised network p




CONCLUSION ON
SPIKED MATRIX-TENSOR MODEL

e First time we have a closed-form conjecture for the threshold of
gradient-based algorithms including constants.
Applicable for (simple) neural networks?

e Gradient flow worse than Langevin algorithm, both worse than AMP.
How can GF & LA be improved to approach the AMP threshold?

o Gradient flow (sometimes) works even when spurious local minima
are present. Quantlfled t  the Kac- Rle approach.




STOCHASTIC GRADIENT DESCENT

LAWY= €0, X, (w2 ) + Allwll
=1

wilt + 1) = w) = n|[Aw(D) + 0, (v, X,,, w(®)]

e Online SGD = each iteration uses samples never used before.
Minimises directly the population loss, no notion of

generalisation gap, i.e. train and test error are the same (in
physics: Saad, Solla‘gs; Saad‘09; Goldt, Advani, Saxe, Krzakala, Zdeborova’19)

e In practice: multi-pass SGD, reuses each sample many times.
Much less existing theory ...




CONTINUOUS TIME LIMIT?

w, (£ 1) = w0 = w0+ D 5,000,206, X, w)]
li=l1
SGD | Persistent-SGD
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MODEL FOR DATA

Binary classification of a Gaussian mixture:
Data X, —c——+\/—z ERP u=l-n

VP

v¢=(1,.1) €R?, z,~ 4 (0,1,

2 clusters

Labels y=(y,,...y)" € {-1,+1}"

o =nld
+

3 clusters

-1 w.p.1/2
+1 w.p.1/2
Regression
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DYNAMICAL MEAN-FIELD THEORY

(Mézard, Parisi, Virasoro, ‘87, Georges, Kotliar, Krauth, Rozenberg, ‘96)

1OP Publishing Journal of Physics A: Mathematical and Theoretical

J. Phys. A: Math. Theor. 51 (2018) 085002 (36pp) https://doi.org/10.1088/1751-8121/aaa68d

Out-of-equilibrium dynamical mean-field
equations for the perceptron model

Elisabeth Agoritsas!®, Giulio Biroli!-2, Pierfrancesco Urbani?
and Francesco Zamponi!

We generalize to the stochastic GD and data model with tests error well defined.

; : DMFT . :
Markovian dynamics of a Non-Markovian dynamics

strongly coupled system of 7| of one degree of freedom

p — oo degrees of freedom | with memory




DYNAMICAL MEAN-FIELD THEORY

Effective (scalar) stochastic process for a typical “gap” h(t) relatedto W(0)" 2, / /P
t
0h@ == (A+40) h® - VAs®O N (¥©),70) + J dt’ My(t, O)h(t') + E(1)
0
d,m(f) = — Am(t) — u(o), m(0) = 0™ =~ deterministic equation for the “magnetisation”
m(t) = w (5T v* / 5

Memory kernels & auxihary functions

O =0 <s(t)(c s \/—A_ho) A’ (y(©), r(®)) > r(&) = /A h(t) + m(t)(c +VA ho)

i = an (sOA" (), r0) ), (@) =0, (COSE) =Mc(t,1)
M, ) = ab (s(t)s(t’)A’ (y(c), ®) A’ (¥(©), r(z'))>, e =

The stochastic process must be solved

6 ,
Mg (t,1) = aA <S(’)A (¥(e), 7 (’))> self-consistently (Eissfeller, Opper ‘92)

oY(t)

Y=0




DYNAMICAL MEAN-FIELD THEORY

Correlation C(t,7) = Tw @' w() and response R(t,t) = L i OW(6)
e ; i)

=l

functions:

9,C(t,1) = — (/1 + /1‘(:)) C(t, 1) + J ds Mg(t, s)C(t, s) + J ds M(t, s)R(t', 5) — m(t')([ ds Mg(t, s)m(s) + pu(f) — ,f(t)m(t)) if t # 7,
0 0 0

%O,C(t, f) = — (/1 + ,1‘(:)) C@t, 1) + I ds Mi(t, 5)C(t, 5) + J ds M(t, )R(t, s) — m(t)(J ds Mi(t, s)m(s) + p(z) — /f(t)m(t)),
0 0

0
t

OR(t,1) = — (l + i(z)) R, E)+6(t—1) + J ds Mg(t, $)R(s, 1)

t

Training loss: e(®) =a <f (y(D (r®) )> Training accuracy: a(®)=1- <6 (-—y(b (r®) )>

Lerfe !
. | | 2 2 V2ZAC(t, 1)
Generahsatlon €Irror. egen(t) = Z[Ex’y’xnew’ynew [(ynew 0 ynew) ] )




DMFT FOLLOWS THE WHOLE TRAJECTORY

o-clusters

= T . Persistent-SGD &
(1/T=0.15) <100

- Persistent-SGD
 (1/r=0.3)

4. Persistent-SGD
' (1/T=10.6)

~m- SGD
—— Theory
Bayes-

N SGD-inspired
optimal

discretisation is ad hoc, yet
agrees with simulations
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DMFT FOLLOWS THE WHOLE TRAJECTORY

2-clusters, full-batch

[
O O
o o

R = variance at
initialization

S O = G

R
R
R
R

Training accuracy (%)

For 2-clusters R=0 is
optimal after one iteration.
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DMFT FOLLOWS THE WHOLE TRAJECTORY

3-clusters

L4

0 20 40 60 80 100 120
t

Gradient descent
—-¥-- Persistent-SGD (b = 0.3)
«  Persistent-SGD (b =0.2)
—— Theory

a—>0n 0051 O] R DUl n ()

T'he finite batch size acts as an eftective regularisation.




CONCLUSION

e DMFT tracks the trajectory of GD/SGD for a range of data
models.

e Extensions:

¢ Deduce more insights from the DMFT equations (optimal
hyper-parameter setting, nature of noise ...)

¢ Other data models, networks with hidden units, variants of
GD/SGD.

¢ Rigorous proof of the equations/thresholds.
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